Suppr超能文献

采用基于设定的方法鉴定 AGE1.HN 细胞培养物的生长阶段和影响因素。

Identification of growth phases and influencing factors in cultivations with AGE1.HN cells using set-based methods.

机构信息

Institute for Systems Theory and Automatic Control, Otto-von-Guericke University, Magdeburg, Germany.

出版信息

PLoS One. 2013 Aug 2;8(8):e68124. doi: 10.1371/journal.pone.0068124. Print 2013.

Abstract

Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimental data, unknown kinetic parameters, and the large number of combinations of influencing factors, currently there are only limited structured approaches to tackle these issues. We outline a structured set-based approach to identify different growth phases and the factors influencing cell growth and metabolism. To this end, measurement uncertainties are taken explicitly into account to bound the time-dependent specific growth rate based on the observed increase of the cell concentration. Based on the bounds on the specific growth rate, we can identify qualitatively different growth phases and (in-)validate hypotheses on the factors influencing cell growth and metabolism. We apply the approach to a mammalian suspension cell line (AGE1.HN). We show that growth in batch culture can be divided into two main growth phases. The initial phase is characterized by exponential growth dynamics, which can be described consistently by a relatively simple unstructured and segregated model. The subsequent phase is characterized by a decrease in the specific growth rate, which, as shown, results from substrate limitation and the pH of the medium. An extended model is provided which describes the observed dynamics of cell growth and main metabolites, and the corresponding kinetic parameters as well as their confidence intervals are estimated. The study is complemented by an uncertainty and outlier analysis. Overall, we demonstrate utility of set-based methods for analyzing cell growth and metabolism under conditions of uncertainty.

摘要

在细胞培养中生产生物制药,例如哺乳动物细胞,具有挑战性。数学模型可以为分析、优化和生产过程的操作提供支持。特别是,非结构化模型非常适合这些目的,因为它们可以根据特定的过程条件进行定制。为此,必须确定生长阶段以及影响细胞生长和产物形成的最重要因素。由于实验数据存在噪声和误差、未知动力学参数以及影响因素的大量组合,目前只有有限的结构化方法可以解决这些问题。我们概述了一种结构化的基于集合的方法来识别不同的生长阶段以及影响细胞生长和代谢的因素。为此,明确考虑了测量不确定性,以便根据观察到的细胞浓度增加来约束时变比生长速率。基于比生长速率的边界,我们可以定性地识别不同的生长阶段,并(验证或否定)关于影响细胞生长和代谢的因素的假设。我们将该方法应用于一种哺乳动物悬浮细胞系(AGE1.HN)。我们表明,分批培养中的生长可以分为两个主要生长阶段。初始阶段的特征是指数生长动力学,这可以通过一个相对简单的非结构化和分离模型一致地描述。随后的阶段的特征是比生长速率的下降,如所示,这是由于底物限制和培养基的 pH 值造成的。提供了一个扩展的模型来描述观察到的细胞生长和主要代谢物的动态,以及相应的动力学参数及其置信区间也被估计。该研究通过不确定性和异常值分析得到补充。总体而言,我们证明了基于集合的方法在不确定条件下分析细胞生长和代谢的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0871/3732265/57c76354af66/pone.0068124.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验