Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5663-8. doi: 10.1073/pnas.1112391109. Epub 2012 Mar 26.
The HIV-1 envelope (Env) spike (gp120(3)/gp41(3)) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a "ground state" for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from "snapping" into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry.
HIV-1 包膜(Env)刺突(gp120(3)/gp41(3))经历了大量的结构重排,以介导病毒进入细胞并逃避宿主免疫反应。CD4 的结合固定了特定的构象,并使 Env 进入细胞。然而,CD4 结合状态容易自发失活,容易被抗体中和。未结合的 HIV-1 如何保持 CD4 结合能力并调节向 CD4 结合状态的转变?为了从机制上定义这一点,我们确定了来自 HIV-1 谱系 B、C 和 E 的未结合核心 gp120 的晶体结构。值得注意的是,所有这些未结合的 HIV-1 结构都类似于 CD4 结合状态。配体选择的构象固定和全长和核心 gp120 相互作用的热力学分析表明,HIV-1 gp120 采用 CD4 结合构象的趋势受到 V1/V2 和 V3 可变环的限制。同时,我们确定了核心 gp120 与小分子 NBD-556 复合物的结构,该小分子特异性识别 gp120 的 CD4 结合构象。NBD-556 的中和表明,尽管当四级限制放松时,它们可以这样做,但原发分离株的 Env 刺突很少自发地呈现 CD4 结合构象。总之,结果表明 CD4 结合构象代表 gp120 核心的“基态”,可变环和四级相互作用限制未结合的 gp120 不能“突然”进入这种构象。涉及从功能关键状态(例如 CD4 结合状态)的未结合结构的变形的控制机制为 HIV-1 Env 结构多样性和对抗体和抑制剂的抗性提供了优势,同时保持了进入所必需的元素。