Suppr超能文献

使用改组分类和回归树以及自适应神经模糊推理系统对人中性粒细胞弹性蛋白酶抑制剂进行定量构效关系分析。

Quantitative structure-activity relationship analysis of human neutrophil elastase inhibitors using shuffling classification and regression trees and adaptive neuro-fuzzy inference systems.

机构信息

Department of Science, Babol University of Technology, Babol, Iran.

出版信息

SAR QSAR Environ Res. 2012 Jul;23(5-6):505-20. doi: 10.1080/1062936X.2012.665811. Epub 2012 Mar 27.

Abstract

The purpose of this study was to develop quantitative structure-activity relationship models for N-benzoylindazole derivatives as inhibitors of human neutrophil elastase. These models were developed with the aid of classification and regression trees (CART) and an adaptive neuro-fuzzy inference system (ANFIS) combined with a shuffling cross-validation technique using interpretable descriptors. More than one hundred meaningful descriptors, representing various structural characteristics for all 51 N-benzoylindazole derivatives in the data set, were calculated and used as the original variables for shuffling CART modelling. Five descriptors of average Wiener index, Kier benzene-likeliness index, subpolarity parameter, average shape profile index of order 2 and folding degree index selected by the shuffling CART technique have been used as inputs of the ANFIS for prediction of inhibition behaviour of N-benzoylindazole derivatives. The results of the developed shuffling CART-ANFIS model compared to other techniques, such as genetic algorithm (GA)-partial least square (PLS)-ANFIS and stepwise multiple linear regression (MLR)-ANFIS, are promising and descriptive. The satisfactory results r2p = 0.845, Q2(LOO) = 0.861, r2(L25%O) = 0.829, RMSE(LOO)  = 0.305 and RMSE(L25%O)  = 0.336) demonstrate that shuffling CART-ANFIS models present the relationship between human neutrophil elastase inhibitor activity and molecular descriptors, and they yield predictions in excellent agreement with the experimental values.

摘要

本研究旨在建立 N-苯甲酰基吲哚衍生物作为人中性粒细胞弹性蛋白酶抑制剂的定量构效关系模型。这些模型是借助分类和回归树 (CART) 和自适应神经模糊推理系统 (ANFIS) 与洗牌交叉验证技术结合可解释描述符开发的。超过 100 个有意义的描述符,代表了数据集中所有 51 个 N-苯甲酰基吲哚衍生物的各种结构特征,被计算出来并用作洗牌 CART 建模的原始变量。通过洗牌 CART 技术选择的五个描述符,即平均 Wiener 指数、Kier 苯相似性指数、次极性参数、二阶平均形状轮廓指数和折叠度指数,已被用作 ANFIS 的输入,用于预测 N-苯甲酰基吲哚衍生物的抑制行为。与其他技术(如遗传算法 (GA)-偏最小二乘 (PLS)-ANFIS 和逐步多元线性回归 (MLR)-ANFIS)相比,开发的洗牌 CART-ANFIS 模型的结果是有前途的和描述性的。令人满意的结果 r2p=0.845、Q2(LOO)=0.861、r2(L25%O)=0.829、RMSE(LOO)=0.305 和 RMSE(L25%O)=0.336 表明洗牌 CART-ANFIS 模型呈现了人中性粒细胞弹性蛋白酶抑制剂活性与分子描述符之间的关系,并且它们的预测与实验值非常吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验