Department of Chemistry, Sharif University of Technology, P.O. Box 11155-9516, Tehran, Iran.
J Pharm Biomed Anal. 2009 Dec 5;50(5):853-60. doi: 10.1016/j.jpba.2009.07.009. Epub 2009 Jul 14.
In this work, the inhibitory activity of pyridine N-oxide derivatives against human severe acute respiratory syndrome (SARS) is predicted in terms of quantitative structure-activity relationship (QSAR) models. These models were developed with the aid of multivariate adaptive regression spline (MARS) and adaptive neuro-fuzzy inference system (ANFIS) combined with shuffling cross-validation technique. A shuffling MARS algorithm is utilized to select the most important variables in QSAR modeling and then these variables were used as inputs of ANFIS to predict SARS inhibitory activities of pyridine N-oxide derivatives. A data set of 119 drug-like compounds was coded with over hundred calculated meaningful molecular descriptors. The best descriptors describing the inhibition mechanism were solvation connectivity index, length to breadth ratio, relative negative charge, harmonic oscillator of aromatic index, average molecular weight and total path count. These parameters are among topological, electronic, geometric, constitutional and aromaticity descriptors. The statistical parameters of R2 and root mean square error (RMSE) are 0.884 and 0.359, respectively. The accuracy and robustness of shuffling MARS-ANFIS model in predicting inhibition behavior of pyridine N-oxide derivatives (pIC50) was illustrated using leave-one-out and leave-multiple-out cross-validation techniques and also by Y-randomization. Comparison of the results of the proposed model with those of GA-PLS-ANFIS shows that the shuffling MARS-ANFIS model is superior and can be considered as a tool for predicting the inhibitory behavior of SARS drug-like molecules.
在这项工作中,预测了吡啶 N-氧化物衍生物对人类严重急性呼吸系统综合征 (SARS) 的抑制活性,其使用的是定量构效关系 (QSAR) 模型。这些模型是借助多元自适应回归样条 (MARS) 和自适应神经模糊推理系统 (ANFIS) 并结合置换交叉验证技术开发的。使用置换 MARS 算法选择 QSAR 建模中最重要的变量,然后将这些变量用作 ANFIS 的输入,以预测吡啶 N-氧化物衍生物对 SARS 的抑制活性。使用超过 100 个有意义的计算分子描述符对 119 种药物样化合物的数据集进行编码。描述抑制机制的最佳描述符是溶剂化连接指数、长宽比、相对负电荷、芳香性指数的调和振荡器、平均分子量和总路径计数。这些参数属于拓扑、电子、几何、结构和芳香性描述符。R2 和均方根误差 (RMSE) 的统计参数分别为 0.884 和 0.359。通过留一法和留多次法交叉验证技术以及 Y-随机化来说明置换 MARS-ANFIS 模型在预测吡啶 N-氧化物衍生物的抑制行为 (pIC50) 方面的准确性和稳健性。与 GA-PLS-ANFIS 的结果进行比较表明,置换 MARS-ANFIS 模型具有优越性,可以作为预测 SARS 类药物分子抑制行为的工具。