Department of Biosciences and Bioengineering and Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
Biophys J. 2012 Mar 21;102(6):1274-83. doi: 10.1016/j.bpj.2011.12.059. Epub 2012 Mar 20.
Uncovering mechanisms that control the dynamics of microtubules is fundamental for our understanding of multiple cellular processes such as chromosome separation and cell motility. Building on previous theoretical work on the dynamic instability of microtubules, we propose here a stochastic model that includes all relevant biochemical processes that affect the dynamics of microtubule plus-end, namely, the binding of GTP-bound monomers, unbinding of GTP- and GDP-bound monomers, and hydrolysis of GTP monomers. The inclusion of dissociation processes, present in our approach but absent from many previous studies, is essential to guarantee the thermodynamic consistency of the model. Our theoretical method allows us to compute all dynamic properties of microtubules explicitly. Using experimentally determined rates, it is found that the cap size is ∼3.6 layers, an estimate that is compatible with several experimental observations. In the end, our model provides a comprehensive description of the dynamic instability of microtubules that includes not only the statistics of catastrophes but also the statistics of rescues.
揭示控制微管动力学的机制对于我们理解多个细胞过程(如染色体分离和细胞运动)至关重要。基于之前关于微管动态不稳定性的理论工作,我们在这里提出了一个随机模型,其中包括影响微管正端动力学的所有相关生化过程,即 GTP 结合单体的结合、GTP 和 GDP 结合单体的解结合以及 GTP 单体的水解。包括离解过程是本方法的关键,这与许多之前的研究不同,对于保证模型的热力学一致性至关重要。我们的理论方法允许我们显式计算微管的所有动态特性。使用实验确定的速率,发现帽的大小约为 3.6 层,这一估计与几个实验观察结果相符。最后,我们的模型提供了对微管动态不稳定性的全面描述,不仅包括了灾难的统计数据,还包括了救援的统计数据。