Suppr超能文献

随机水解控制微管的动态不稳定性。

Random hydrolysis controls the dynamic instability of microtubules.

机构信息

Department of Biosciences and Bioengineering and Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.

出版信息

Biophys J. 2012 Mar 21;102(6):1274-83. doi: 10.1016/j.bpj.2011.12.059. Epub 2012 Mar 20.

Abstract

Uncovering mechanisms that control the dynamics of microtubules is fundamental for our understanding of multiple cellular processes such as chromosome separation and cell motility. Building on previous theoretical work on the dynamic instability of microtubules, we propose here a stochastic model that includes all relevant biochemical processes that affect the dynamics of microtubule plus-end, namely, the binding of GTP-bound monomers, unbinding of GTP- and GDP-bound monomers, and hydrolysis of GTP monomers. The inclusion of dissociation processes, present in our approach but absent from many previous studies, is essential to guarantee the thermodynamic consistency of the model. Our theoretical method allows us to compute all dynamic properties of microtubules explicitly. Using experimentally determined rates, it is found that the cap size is ∼3.6 layers, an estimate that is compatible with several experimental observations. In the end, our model provides a comprehensive description of the dynamic instability of microtubules that includes not only the statistics of catastrophes but also the statistics of rescues.

摘要

揭示控制微管动力学的机制对于我们理解多个细胞过程(如染色体分离和细胞运动)至关重要。基于之前关于微管动态不稳定性的理论工作,我们在这里提出了一个随机模型,其中包括影响微管正端动力学的所有相关生化过程,即 GTP 结合单体的结合、GTP 和 GDP 结合单体的解结合以及 GTP 单体的水解。包括离解过程是本方法的关键,这与许多之前的研究不同,对于保证模型的热力学一致性至关重要。我们的理论方法允许我们显式计算微管的所有动态特性。使用实验确定的速率,发现帽的大小约为 3.6 层,这一估计与几个实验观察结果相符。最后,我们的模型提供了对微管动态不稳定性的全面描述,不仅包括了灾难的统计数据,还包括了救援的统计数据。

相似文献

1
Random hydrolysis controls the dynamic instability of microtubules.
Biophys J. 2012 Mar 21;102(6):1274-83. doi: 10.1016/j.bpj.2011.12.059. Epub 2012 Mar 20.
2
Theoretical analysis of microtubules dynamics using a physical-chemical description of hydrolysis.
J Phys Chem B. 2013 Aug 8;117(31):9217-23. doi: 10.1021/jp404794f. Epub 2013 Jul 30.
3
Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules.
Biochemistry. 2003 Feb 25;42(7):2122-6. doi: 10.1021/bi027010s.
4
The minimum GTP cap required to stabilize microtubules.
Curr Biol. 1994 Dec 1;4(12):1053-61. doi: 10.1016/s0960-9822(00)00243-8.
5
Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues.
Science. 2008 Nov 28;322(5906):1353-6. doi: 10.1126/science.1165401. Epub 2008 Oct 16.
7
Intrinsic microtubule GTP-cap dynamics in semi-confined systems: kinetochore-microtubule interface.
J Biol Phys. 2013 Jan;39(1):81-98. doi: 10.1007/s10867-012-9287-3. Epub 2012 Oct 18.
8
A thermodynamic model of microtubule assembly and disassembly.
PLoS One. 2009 Aug 11;4(8):e6378. doi: 10.1371/journal.pone.0006378.
9
Directed elongation model for microtubule GTP hydrolysis.
Proc Natl Acad Sci U S A. 1985 May;82(10):3267-71. doi: 10.1073/pnas.82.10.3267.
10
Microtubule dynamics modulated by guanosine triphosphate hydrolysis activity of beta-tubulin.
Science. 1994 May 6;264(5160):839-42. doi: 10.1126/science.8171338.

引用本文的文献

1
Hydrolysis-dependent severing tunes internal monomeric heterogeneity to shape actin length distributions.
bioRxiv. 2025 May 30:2025.05.29.656816. doi: 10.1101/2025.05.29.656816.
2
Physical effects of crowdant size and concentration on collective microtubule polymerization.
Biophys J. 2025 Mar 4;124(5):789-806. doi: 10.1016/j.bpj.2025.01.020. Epub 2025 Jan 29.
3
EB3-informed dynamics of the microtubule stabilizing cap during stalled growth.
Biophys J. 2025 Jan 21;124(2):227-244. doi: 10.1016/j.bpj.2024.11.3314. Epub 2024 Nov 27.
4
Minimal Mechanisms of Microtubule Length Regulation in Living Cells.
Bull Math Biol. 2024 Apr 16;86(5):58. doi: 10.1007/s11538-024-01279-z.
5
The effect of motor-induced shaft dynamics on microtubule stability and length.
Biophys J. 2023 Jan 17;122(2):346-359. doi: 10.1016/j.bpj.2022.12.010. Epub 2022 Dec 9.
6
Effects of random hydrolysis on biofilament length distributions in a shared subunit pool.
Biophys J. 2022 Feb 1;121(3):502-514. doi: 10.1016/j.bpj.2021.12.028. Epub 2021 Dec 23.
7
Atomistic molecular dynamics simulations of tubulin heterodimers explain the motion of a microtubule.
Eur Biophys J. 2021 Oct;50(7):927-940. doi: 10.1007/s00249-021-01553-1. Epub 2021 Jul 2.
8
Structural model for differential cap maturation at growing microtubule ends.
Elife. 2020 Mar 10;9:e50155. doi: 10.7554/eLife.50155.
10
Semiflexible Chains at Surfaces: Worm-Like Chains and beyond.
Polymers (Basel). 2016 Aug 8;8(8):286. doi: 10.3390/polym8080286.

本文引用的文献

2
Rapid microtubule self-assembly kinetics.
Cell. 2011 Aug 19;146(4):582-92. doi: 10.1016/j.cell.2011.06.053.
3
Tubulin bistability and polymorphic dynamics of microtubules.
Phys Rev Lett. 2010 Dec 31;105(26):268102. doi: 10.1103/PhysRevLett.105.268102. Epub 2010 Dec 28.
4
Role of ATP-hydrolysis in the dynamics of a single actin filament.
Biophys J. 2010 Apr 21;98(8):1418-27. doi: 10.1016/j.bpj.2009.12.4306.
5
GDP-tubulin incorporation into growing microtubules modulates polymer stability.
J Biol Chem. 2010 Jun 4;285(23):17507-13. doi: 10.1074/jbc.M109.099515. Epub 2010 Apr 6.
6
A theory of microtubule catastrophes and their regulation.
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21173-8. doi: 10.1073/pnas.0910774106. Epub 2009 Nov 30.
7
Structural plasticity in actin and tubulin polymer dynamics.
Science. 2009 Aug 21;325(5943):960-3. doi: 10.1126/science.1168823.
8
A thermodynamic model of microtubule assembly and disassembly.
PLoS One. 2009 Aug 11;4(8):e6378. doi: 10.1371/journal.pone.0006378.
9
Growth, fluctuation and switching at microtubule plus ends.
Nat Rev Mol Cell Biol. 2009 Aug;10(8):569-74. doi: 10.1038/nrm2713. Epub 2009 Jun 10.
10
Nonequilibrium self-assembly of a filament coupled to ATP/GTP hydrolysis.
Biophys J. 2009 Mar 18;96(6):2146-59. doi: 10.1016/j.bpj.2008.12.3920.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验