Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
Cell. 2011 Aug 19;146(4):582-92. doi: 10.1016/j.cell.2011.06.053.
Microtubule assembly is vital for many fundamental cellular processes. Current models for microtubule assembly kinetics assume that the subunit dissociation rate from a microtubule tip is independent of free subunit concentration. Total-Internal-Reflection-Fluorescence (TIRF) microscopy experiments and data from a laser tweezers assay that measures in vitro microtubule assembly with nanometer resolution, provides evidence that the subunit dissociation rate from a microtubule tip increases as the free subunit concentration increases. These data are consistent with a two-dimensional model for microtubule assembly, and are explained by a shift in microtubule tip structure from a relatively blunt shape at low free concentrations to relatively tapered at high free concentrations. We find that because both the association and the dissociation rates increase at higher free subunit concentrations, the kinetics of microtubule assembly are an order-of-magnitude higher than currently estimated in the literature.
微管组装对于许多基本的细胞过程至关重要。目前的微管组装动力学模型假设,从微管尖端解离的亚基速率与游离亚基浓度无关。全内反射荧光(TIRF)显微镜实验和激光镊子测定的实验数据以纳米分辨率测量体外微管组装,提供了证据表明,从微管尖端解离的亚基速率随着游离亚基浓度的增加而增加。这些数据与微管组装的二维模型一致,并可以通过微管尖端结构从低游离浓度时相对较钝的形状到高游离浓度时相对较细的形状的转变来解释。我们发现,由于在较高的游离亚基浓度下,结合和解离速率均增加,因此微管组装的动力学比文献中目前估计的要高一个数量级。