Suppr超能文献

一个用于估算负荷、改进监测设计和校准区域养分SPARROW模型的多机构养分数据集。

A Multi-Agency Nutrient Dataset Used to Estimate Loads, Improve Monitoring Design, and Calibrate Regional Nutrient SPARROW Models.

作者信息

Saad David A, Schwarz Gregory E, Robertson Dale M, Booth Nathaniel L

出版信息

J Am Water Resour Assoc. 2011 Oct;47(5):933-949. doi: 10.1111/j.1752-1688.2011.00575.x.

Abstract

Stream-loading information was compiled from federal, state, and local agencies, and selected universities as part of an effort to develop regional SPAtially Referenced Regressions On Watershed attributes (SPARROW) models to help describe the distribution, sources, and transport of nutrients in streams throughout much of the United States. After screening, 2,739 sites, sampled by 73 agencies, were identified as having suitable data for calculating long-term mean annual nutrient loads required for SPARROW model calibration. These sites had a wide range in nutrient concentrations, loads, and yields, and environmental characteristics in their basins. An analysis of the accuracy in load estimates relative to site attributes indicated that accuracy in loads improve with increases in the number of observations, the proportion of uncensored data, and the variability in flow on observation days, whereas accuracy declines with increases in the root mean square error of the water-quality model, the flow-bias ratio, the number of days between samples, the variability in daily streamflow for the prediction period, and if the load estimate has been detrended. Based on compiled data, all areas of the country had recent declines in the number of sites with sufficient water-quality data to compute accurate annual loads and support regional modeling analyses. These declines were caused by decreases in the number of sites being sampled and data not being entered in readily accessible databases.

摘要

河流负荷信息是从联邦、州和地方机构以及部分大学收集而来,作为开发区域流域属性空间参考回归(SPARROW)模型工作的一部分,该模型旨在帮助描述美国大部分地区河流中养分的分布、来源和传输情况。经过筛选,确定了由73个机构采样的2739个站点拥有适用于计算SPARROW模型校准所需长期年均养分负荷的数据。这些站点的养分浓度、负荷和产量以及流域环境特征差异很大。一项关于负荷估计相对于站点属性的准确性分析表明,负荷估计的准确性随着观测次数的增加、未审查数据的比例以及观测日流量的变异性而提高,而随着水质模型的均方根误差、流量偏差率、样本间天数、预测期内日流量的变异性以及负荷估计是否已去除趋势而下降。根据汇编数据,该国所有地区拥有足够水质数据以计算准确年度负荷并支持区域建模分析的站点数量近期均有所下降。这些下降是由于采样站点数量减少以及数据未录入易于访问的数据库所致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验