Wittkowski Raphael, Löwen Hartmut
Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 1):021406. doi: 10.1103/PhysRevE.85.021406. Epub 2012 Feb 21.
Recently the Brownian dynamics of self-propelled (active) rodlike particles was explored to model the motion of colloidal microswimmers, catalytically driven nanorods, and bacteria. Here we generalize this description to biaxial particles with arbitrary shape and derive the corresponding Langevin equation for a self-propelled Brownian spinning top. The biaxial swimmer is exposed to a hydrodynamic Stokes friction force at low Reynolds numbers, to fluctuating random forces and torques as well as to an external and an internal (effective) force and torque. The latter quantities control its self-propulsion. Due to biaxiality and hydrodynamic translational-rotational coupling, the Langevin equation can only be solved numerically. In the special case of an orthotropic particle in the absence of external forces and torques, the noise-free (zero-temperature) trajectory is analytically found to be a circular helix. This trajectory is confirmed numerically to be more complex in the general case of an arbitrarily shaped particle under the influence of arbitrary forces and torques involving a transient irregular motion before ending up in a simple periodic motion. By contrast, if the external force vanishes, no transient regime is found, and the particle moves on a superhelical trajectory. For orthotropic particles, the noise-averaged trajectory is a generalized concho-spiral. We furthermore study the reduction of the model to two spatial dimensions and classify the noise-free trajectories completely finding circles, straight lines with and without transients, as well as cycloids and arbitrary periodic trajectories.
最近,人们通过研究自驱动(活性)棒状粒子的布朗动力学,来模拟胶体微游动体、催化驱动纳米棒和细菌的运动。在此,我们将这种描述推广到任意形状的双轴粒子,并推导出自驱动布朗陀螺的相应朗之万方程。在低雷诺数下,双轴游动体受到流体动力学斯托克斯摩擦力、随机涨落力和力矩,以及外力和内力(有效)力和力矩的作用。后者控制着它的自推进。由于双轴性和流体动力学平动 - 转动耦合,朗之万方程只能通过数值方法求解。在没有外力和力矩的正交各向异性粒子的特殊情况下,无噪声(零温度)轨迹经解析得出为圆形螺旋线。在任意力和力矩作用下任意形状粒子的一般情况下,通过数值计算证实该轨迹更为复杂,在最终进入简单周期运动之前会有瞬态不规则运动。相比之下,如果外力消失,则找不到瞬态状态,粒子沿超螺旋轨迹运动。对于正交各向异性粒子,噪声平均轨迹是广义贝壳螺旋线。我们还研究了模型在二维空间的简化,并对无噪声轨迹进行了完全分类,包括圆、有或无瞬态的直线、摆线和任意周期轨迹。