Suppr超能文献

心跳动力学的修正排列熵分析

Modified permutation-entropy analysis of heartbeat dynamics.

作者信息

Bian Chunhua, Qin Chang, Ma Qianli D Y, Shen Qinghong

机构信息

School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 1):021906. doi: 10.1103/PhysRevE.85.021906. Epub 2012 Feb 10.

Abstract

Heart rate variability (HRV) contains important information about the modulation of the cardiovascular system. Various methods of nonlinear dynamics (e.g., estimating Lyapunov exponents) and complexity measures (e.g., correlation dimension or entropies) have been applied to HRV analysis. Permutation entropy, which was proposed recently, has been widely used in many fields due to its conceptual and computational simplicity. It maps a time series onto a symbolic sequence of permutation ranks. The original permutation entropy assumes the time series under study has a continuous distribution, thus equal values are rare and can be ignored by ranking them according to their order of emergence, or broken by adding small random perturbations to ensure every symbol in a sequence is different. However, when the observed time series is digitized with lower resolution leading to a greater number of equal values, or the equalities represent certain characteristic sequential patterns of the system, it may not be rational to simply ignore or break them. In the present paper, a modified permutation entropy is proposed that, by mapping the equal value onto the same symbol (rank), allows for a more accurate characterization of system states. The application of the modified permutation entropy to the analysis of HRV is investigated using clinically collected data. Results show that modified permutation entropy can greatly improve the ability to distinguish the HRV signals under different physiological and pathological conditions. It can characterize the complexity of HRV more effectively than the original permutation entropy.

摘要

心率变异性(HRV)包含有关心血管系统调节的重要信息。各种非线性动力学方法(例如,估计李雅普诺夫指数)和复杂性度量(例如,关联维数或熵)已应用于HRV分析。最近提出的排列熵由于其概念和计算简单性,已在许多领域中广泛使用。它将时间序列映射到排列秩的符号序列上。原始排列熵假设所研究的时间序列具有连续分布,因此相等的值很少见,可以根据它们出现的顺序对其进行排序而忽略,或者通过添加小的随机扰动来打破,以确保序列中的每个符号都不同。然而,当观察到的时间序列以较低分辨率数字化导致相等值的数量更多时,或者这些相等值代表系统的某些特征顺序模式时,简单地忽略或打破它们可能不合理。在本文中,提出了一种改进的排列熵,通过将相等值映射到相同符号(秩)上,可以更准确地表征系统状态。使用临床收集的数据研究了改进的排列熵在HRV分析中的应用。结果表明,改进的排列熵可以大大提高区分不同生理和病理条件下HRV信号的能力。它比原始排列熵更有效地表征HRV的复杂性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验