Chen Zhe, Ma Xiaodong, Fu Jielin, Li Yaan
School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China.
Key Lab. of Cognitive Radio & Information Processing, The Ministry of Education, Guilin University of Electronic Technology, Guilin 541004, China.
Entropy (Basel). 2023 Aug 7;25(8):1175. doi: 10.3390/e25081175.
Entropy quantification approaches have gained considerable attention in engineering applications. However, certain limitations persist, including the strong dependence on parameter selection, limited discriminating power, and low robustness to noise. To alleviate these issues, this paper introduces two novel algorithms for time series analysis: the ensemble improved permutation entropy (EIPE) and multiscale EIPE (MEIPE). Our approaches employ a new symbolization process that considers both permutation relations and amplitude information. Additionally, the ensemble technique is utilized to reduce the dependence on parameter selection. We performed a comprehensive evaluation of the proposed methods using various synthetic and experimental signals. The results illustrate that EIPE is capable of distinguishing white, pink, and brown noise with a smaller number of samples compared to traditional entropy algorithms. Furthermore, EIPE displays the potential to discriminate between regular and non-regular dynamics. Notably, when compared to permutation entropy, weighted permutation entropy, and dispersion entropy, EIPE exhibits superior robustness against noise. In practical applications, such as RR interval data classification, bearing fault diagnosis, marine vessel identification, and electroencephalographic (EEG) signal classification, the proposed methods demonstrate better discriminating power compared to conventional entropy measures. These promising findings validate the effectiveness and potential of the algorithms proposed in this paper.
熵量化方法在工程应用中受到了广泛关注。然而,仍然存在一些局限性,包括对参数选择的强烈依赖、有限的辨别能力以及对噪声的低鲁棒性。为了缓解这些问题,本文介绍了两种用于时间序列分析的新算法:集成改进排列熵(EIPE)和多尺度EIPE(MEIPE)。我们的方法采用了一种新的符号化过程,该过程同时考虑了排列关系和幅度信息。此外,集成技术被用于减少对参数选择的依赖。我们使用各种合成信号和实验信号对所提出的方法进行了全面评估。结果表明,与传统熵算法相比,EIPE能够用更少的样本区分白噪声、粉红噪声和布朗噪声。此外,EIPE显示出区分规则和非规则动态的潜力。值得注意的是,与排列熵、加权排列熵和离散熵相比,EIPE对噪声具有更强的鲁棒性。在实际应用中,如RR间期数据分类、轴承故障诊断、船舶识别和脑电图(EEG)信号分类,所提出的方法比传统熵度量具有更好的辨别能力。这些有前景的发现验证了本文所提出算法的有效性和潜力。