Suppr超能文献

优化持久随机搜索。

Optimizing persistent random searches.

机构信息

Physics Department, Technical University of Munich, Garching, Germany.

出版信息

Phys Rev Lett. 2012 Feb 24;108(8):088103. doi: 10.1103/PhysRevLett.108.088103. Epub 2012 Feb 22.

Abstract

We consider a minimal model of persistent random searcher with a short range memory. We calculate exactly for such a searcher the mean first-passage time to a target in a bounded domain and find that it admits a nontrivial minimum as function of the persistence length. This reveals an optimal search strategy which differs markedly from the simple ballistic motion obtained in the case of Poisson distributed targets. Our results show that the distribution of targets plays a crucial role in the random search problem. In particular, in the biologically relevant cases of either a single target or regular patterns of targets, we find that, in strong contrast to repeated statements in the literature, persistent random walks with exponential distribution of excursion lengths can minimize the search time, and in that sense perform better than any Levy walk.

摘要

我们考虑了具有短程记忆的持久性随机搜索器的最小模型。我们为这样的搜索器精确计算了在有界域中到达目标的平均首次通过时间,并发现它作为持久性长度的函数存在非平凡的最小值。这揭示了一种不同于在泊松分布目标情况下获得的简单弹道运动的最优搜索策略。我们的结果表明,目标的分布在随机搜索问题中起着至关重要的作用。特别是,在单一目标或目标规则模式的生物学相关情况下,我们发现,与文献中的重复陈述形成鲜明对比的是,具有指数分布的持久性随机游动可以最小化搜索时间,并且在这种意义上比任何 Lévy 游走表现得更好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验