Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
J Theor Biol. 2014 Jan 7;340:17-22. doi: 10.1016/j.jtbi.2013.09.006. Epub 2013 Sep 10.
We suggest that the Australian desert ant Melophorus bagoti approximates a Lévy search pattern by using an intrinsic bi-exponential walk and does so when a Lévy search pattern is advantageous. When attempting to locate its nest, M. bagoti adopt a stereotypical search pattern. These searches begin at the location where the ant expects to find the nest, and comprise loops that start and end at this location, and are directed in different azimuthal directions. Loop lengths are exponentially distributed when searches are in visually familiar surroundings and are well described by a mixture of two exponentials when searches are in unfamiliar landscapes. The latter approximates a power-law distribution, the hallmark of a Lévy search. With the aid of a simple analytically tractable theory, we show that an exponential loop-length distribution is advantageous when the distance to the nest can be estimated with some certainty and that a bi-exponential distribution is advantageous when there is considerable uncertainty regarding the nest location. The best bi-exponential search patterns are shown to be those that come closest to approximating advantageous Lévy looping searches. The bi-exponential search patterns of M. bagoti are found to approximate advantageous Lévy search patterns.
我们认为,澳大利亚沙漠蚂蚁 Melophorus bagoti 通过使用固有双指数行走来近似 Lévy 搜索模式,并且在 Lévy 搜索模式有利时会这样做。当试图找到巢穴时,M. bagoti 会采用一种刻板的搜索模式。这些搜索从蚂蚁期望找到巢穴的位置开始,并包含从该位置开始和结束的循环,并且以不同的方位角方向定向。当搜索处于视觉熟悉的环境中时,循环长度呈指数分布,并且当搜索处于不熟悉的景观中时,可以很好地用两个指数的混合物来描述。后者近似于幂律分布,这是 Lévy 搜索的标志。借助一个简单的可分析处理的理论,我们表明,当可以确定地估计到巢穴的距离时,指数循环长度分布是有利的,而当巢穴位置存在很大不确定性时,双指数分布是有利的。显示出最有利的双指数搜索模式是最接近有利的 Lévy 循环搜索的模式。发现 M. bagoti 的双指数搜索模式近似于有利的 Lévy 搜索模式。