Rupprecht Jean-François, Bénichou Olivier, Voituriez Raphael
Sorbonne Universités, UPMC Université Paris 06, UMR 7600, Laboratoire de Physique Théorique de la Matière Condensée, 4 Place Jussieu, Paris, France.
Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
Phys Rev E. 2016 Jul;94(1-1):012117. doi: 10.1103/PhysRevE.94.012117. Epub 2016 Jul 14.
The run-and-tumble walk, consisting of randomly reoriented ballistic excursions, models phenomena ranging from gas kinetics to bacteria motility. We evaluate the mean time required for this walk to find a fixed target within a two- or three-dimensional spherical confinement. We find that the mean search time admits a minimum as a function of the mean run duration for various types of boundary conditions and run duration distributions (exponential, power-law, deterministic). Our result stands in sharp contrast to the pure ballistic motion, which is predicted to be the optimal search strategy in the case of Poisson-distributed targets.
由随机重新定向的弹道式偏移组成的“奔跑与翻滚”行走模式,可模拟从气体动力学到细菌运动等各种现象。我们评估了在二维或三维球形限制内这种行走模式找到固定目标所需的平均时间。我们发现,对于各种类型的边界条件和奔跑持续时间分布(指数分布、幂律分布、确定性分布),平均搜索时间作为平均奔跑持续时间的函数存在一个最小值。我们的结果与纯弹道运动形成鲜明对比,在泊松分布目标的情况下,纯弹道运动被预测为最优搜索策略。