Department of Global Ecology, Carnegie Institution for Science, Stanford, California 94305, USA.
Ecol Appl. 2012 Jan;22(1):104-18. doi: 10.1890/11-1401.1.
Aboveground biomass (AGB) reflects multiple and often undetermined ecological and land-use processes, yet detailed landscape-level studies of AGB are uncommon due to the difficulty in making consistent measurements at ecologically relevant scales. Working in a protected mediterranean-type landscape (Jasper Ridge Biological Preserve, California, USA), we combined field measurements with remotely sensed data from the Carnegie Airborne Observatory's light detection and ranging (lidar) system to create a detailed AGB map. We then developed a predictive model using a maximum of 56 explanatory variables derived from geologic and historic-ownership maps, a digital elevation model, and geographic coordinates to evaluate possible controls over currently observed AGB patterns. We tested both ordinary least-squares regression (OLS) and autoregressive approaches. OLS explained 44% of the variation in AGB, and simultaneous autoregression with a 100-m neighborhood improved the fit to an r2 = 0.72, while reducing the number of significant predictor variables from 27 variables in the OLS model to 11 variables in the autoregressive model. We also compared the results from these approaches to a more typical field-derived data set; we randomly sampled 5% of the data 1000 times and used the same OLS approach each time. Environmental filters including incident solar radiation, substrate type, and topographic position were significant predictors of AGB in all models. Past ownership was a minor but significant predictor, despite the long history of conservation at the site. The weak predictive power of these environmental variables, and the significant improvement when spatial autocorrelation was incorporated, highlight the importance of land-use history, disturbance regime, and population dynamics as controllers of AGB.
地上生物量(AGB)反映了多种生态和土地利用过程,这些过程往往难以确定,但由于难以在生态相关尺度上进行一致的测量,因此对地上生物量的详细景观水平研究很少。我们在一个受保护的地中海型景观(美国加利福尼亚州的 Jasper Ridge 生物保护区)中工作,将实地测量与卡内基航空天文台的光探测和测距(激光雷达)系统的遥感数据相结合,创建了一个详细的 AGB 地图。然后,我们使用最多 56 个解释变量(源自地质和历史所有权图、数字高程模型和地理坐标)开发了一个预测模型,以评估可能对当前观察到的 AGB 模式产生影响的控制因素。我们同时测试了普通最小二乘法(OLS)和自回归方法。OLS 解释了 AGB 变化的 44%,而具有 100 米邻域的自回归则将拟合度提高到了 r2 = 0.72,同时将 OLS 模型中 27 个显著预测变量减少到自回归模型中的 11 个。我们还将这些方法的结果与更典型的实地数据进行了比较;我们随机抽取了数据的 5%并进行了 1000 次采样,每次都使用相同的 OLS 方法。包括入射太阳辐射、基质类型和地形位置在内的环境过滤器是所有模型中 AGB 的重要预测因子。尽管该地点有着悠久的保护历史,但过去的所有权仍然是一个次要但重要的预测因子。这些环境变量的预测能力较弱,而当纳入空间自相关时,预测能力显著提高,这突出了土地利用历史、干扰制度和种群动态作为 AGB 控制因素的重要性。