Suppr超能文献

两个“森林”的故事:随机森林机器学习助力热带森林碳测绘

A tale of two "forests": random forest machine learning AIDS tropical forest carbon mapping.

作者信息

Mascaro Joseph, Asner Gregory P, Knapp David E, Kennedy-Bowdoin Ty, Martin Roberta E, Anderson Christopher, Higgins Mark, Chadwick K Dana

机构信息

Department of Global Ecology, Carnegie Institution for Science, Stanford, California, United States of America.

出版信息

PLoS One. 2014 Jan 28;9(1):e85993. doi: 10.1371/journal.pone.0085993. eCollection 2014.

Abstract

Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus). The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging)-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including--in the latter case--x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area) for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called "out-of-bag"), which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha(-1) when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation.

摘要

要实施诸如REDD+(减少毁林和森林退化以及森林碳储存)等碳抵消机制,需要准确且具有空间明确性的热带森林碳储量地图。随机森林机器学习算法可能有助于利用遥感数据进行碳制图应用。然而,随机森林从未与传统且可能更可靠的技术(如区域分层抽样和尺度上推)进行过比较,并且很少与空间数据一起使用。在此,我们评估了在西亚马逊地区1600万公顷的重点区域内,与分层方法相比,随机森林在将基于机载激光雷达的碳估算结果进行尺度上推时的性能。我们考虑了随机森林的两次运行,一次包含空间上下文建模(即直接将x和y位置纳入模型),另一次不包含。在每种情况下,我们留出800万公顷(即重点区域的一半)用于验证;这种对随机森林的严格测试超出了该算法通常进行的内部验证(即所谓的“袋外”验证),事实证明这种内部验证对于此空间应用是不够的。在秘鲁北部这个异质区域,具有空间上下文的模型是随机森林表现最佳的运行方式,它解释了验证区域内基于激光雷达的碳估算结果的59%,相比之下,分层方法为37%,不具有空间上下文的随机森林为43%。随着解释变异提高60%,在使用具有空间上下文的随机森林时,相对于验证激光雷达样本的均方根误差从33 Mg C ha⁻¹降至26 Mg C ha⁻¹。我们的结果表明,在使用随机森林时应考虑空间上下文,这样做可能会显著改善用于减缓气候变化目的的碳储量建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce40/3904849/206db680e971/pone.0085993.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验