Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA.
Carbon Balance Manag. 2013 Jul 16;8(1):7. doi: 10.1186/1750-0680-8-7.
High fidelity carbon mapping has the potential to greatly advance national resource management and to encourage international action toward climate change mitigation. However, carbon inventories based on field plots alone cannot capture the heterogeneity of carbon stocks, and thus remote sensing-assisted approaches are critically important to carbon mapping at regional to global scales. We advanced a high-resolution, national-scale carbon mapping approach applied to the Republic of Panama - one of the first UN REDD + partner countries.
Integrating measurements of vegetation structure collected by airborne Light Detection and Ranging (LiDAR) with field inventory plots, we report LiDAR-estimated aboveground carbon stock errors of ~10% on any 1-ha land parcel across a wide range of ecological conditions. Critically, this shows that LiDAR provides a highly reliable replacement for inventory plots in areas lacking field data, both in humid tropical forests and among drier tropical vegetation types. We then scale up a systematically aligned LiDAR sampling of Panama using satellite data on topography, rainfall, and vegetation cover to model carbon stocks at 1-ha resolution with estimated average pixel-level uncertainty of 20.5 Mg C ha-1 nationwide.
The national carbon map revealed strong abiotic and human controls over Panamanian carbon stocks, and the new level of detail with estimated uncertainties for every individual hectare in the country sets Panama at the forefront in high-resolution ecosystem management. With this repeatable approach, carbon resource decision-making can be made on a geospatially explicit basis, enhancing human welfare and environmental protection.
高保真度的碳测绘技术具有极大地推进国家资源管理和鼓励国际社会采取行动应对气候变化的潜力。然而,仅基于野外样地的碳清查无法捕捉到碳储量的异质性,因此遥感辅助方法对于在区域到全球尺度上进行碳测绘至关重要。我们提出了一种高分辨率、全国范围的碳测绘方法,并将其应用于巴拿马共和国——联合国 REDD+ 首批合作伙伴国家之一。
我们整合了机载激光雷达(LiDAR)测量的植被结构数据与野外清查样地,报告称在广泛的生态条件下,LiDAR 估算的每 1 公顷土地上地上碳储量的误差约为 10%。至关重要的是,这表明在缺乏实地数据的地区,LiDAR 可以非常可靠地替代清查样地,无论是在潮湿的热带森林还是在较干燥的热带植被类型中。然后,我们利用地形、降雨和植被覆盖的卫星数据对巴拿马进行了系统的 LiDAR 采样,以 1 公顷的分辨率对碳储量进行建模,全国平均像素级不确定性估计为 20.5 Mg C ha-1。
全国碳图揭示了巴拿马碳储量受到强烈的非生物和人为因素的控制,并且该国每一个单独公顷的估计不确定性的新细节水平使巴拿马处于高分辨率生态系统管理的前沿。通过这种可重复的方法,可以在地理空间上明确的基础上进行碳资源决策,从而提高人类福利和环境保护。