Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
Invest Radiol. 2012 May;47(5):284-91. doi: 10.1097/RLI.0b013e3182438e5d.
To investigate the ability of parametric diffusion tensor imaging (DTI), applied at 3 Tesla, to dissect breast tissue architecture and evaluate breast lesions.
All protocols were approved and a signed informed consent was obtained from all subjects. The study included 21 healthy women, 26 women with 33 malignant lesions, and 14 women with 20 benign lesions. Images were recorded at 3 Tesla with a protocol optimized for breast DTI at a spatial resolution of 1.9 × 1.9 × (2-2.5) mm3. Image processing algorithms and software, applied at pixel resolution, yielded vector maps of prime diffusion direction and parametric maps of the 3 orthogonal diffusion coefficients and of the fractional anisotropy and maximal anisotropy.
The DTI-derived vector maps and parametric maps revealed the architecture of the entire mammary fibroglandular tissue and allowed a reliable detection of malignant lesions. Cancer lesions exhibited significantly lower values of the orthogonal diffusion coefficients, λ1, λ2, λ3, and of the maximal anisotropy index λ1-λ3 as compared with normal breast tissue (P < 0.0001) and to benign breast lesions (P < 0.0009 and 0.004, respectively). Maps of λ1 exhibited the highest contrast-to-noise ratio enabling delineation of the cancer lesions. These maps also provided high sensitivity/specificity of 95.6%/97.7% for differentiating cancers from benign lesions, which were similar to the sensitivity/specificity of dynamic contrast-enhanced magnetic resonance imaging of 94.8%/92.9%. Maps of λ1-λ3 provided a secondary independent diagnostic parameter with high sensitivity of 92.3%, but low specificity of 69.5% for differentiating cancers from benign lesions.
Mapping the diffusion tensor parameters at high spatial resolution provides a potential novel means for dissecting breast architecture. Parametric maps of λ1 and λ1-λ3 facilitate the detection and diagnosis of breast cancer.
探讨在 3T 场强下应用参数化弥散张量成像(DTI)来剖析乳腺组织架构并评估乳腺病变的能力。
所有方案均获得批准,所有研究对象均签署知情同意书。该研究纳入 21 名健康女性、26 名 33 例恶性病变女性和 14 名 20 例良性病变女性。在 3T 场强下应用优化的乳腺 DTI 协议采集图像,空间分辨率为 1.9×1.9×(2-2.5)mm3。应用于像素分辨率的图像处理算法和软件生成主要弥散方向向量图以及 3 个正交弥散系数、各向异性分数和最大各向异性的参数图。
DTI 衍生的向量图和参数图揭示了整个乳腺纤维腺体组织的结构,能够可靠地检测恶性病变。癌症病变的各向异性参数 λ1、λ2、λ3 和最大各向异性指数 λ1-λ3 明显低于正常乳腺组织(P<0.0001)和良性乳腺病变(P<0.0009 和 0.004)。λ1 图的对比噪声比最高,能够清晰勾画癌症病变。这些图也为区分癌症和良性病变提供了高灵敏度/特异性(95.6%/97.7%),与动态对比增强磁共振成像的灵敏度/特异性(94.8%/92.9%)相似。λ1-λ3 图提供了一个独立的辅助诊断参数,具有 92.3%的高灵敏度,但区分癌症和良性病变的特异性仅为 69.5%。
高空间分辨率下弥散张量参数的绘图为剖析乳腺结构提供了一种新的潜在手段。λ1 和 λ1-λ3 参数图有助于发现和诊断乳腺癌。