Department of Pharmaceutics, Hoshi University, Shinagawa, Tokyo 142-8501, Japan.
J Pharm Sci. 2012 Jul;101(7):2372-81. doi: 10.1002/jps.23134. Epub 2012 Mar 30.
The aim of this study was to create a tablet database for use in designing tablet formulations. We focused on the contribution of active pharmaceutical ingredients (APIs) to tablet properties such as hardness and disintegration time (DT). Before we investigated the effects of the APIs, we optimized the tablet base formulation (placebo tablet) according to an expanded simplex search. The optimal placebo tablet showed sufficient hardness and rapid disintegration. We then tested 14 kinds of compounds as the model APIs. The APIs were characterized in terms of their physicochemical properties using Kohonen's self-organizing maps. We also prepared model tablets by incorporating the APIs into the optimal placebo tablet, and then examined the tablet properties, including tensile strength and DT. On the basis of the experimental data, an ensemble artificial neural network incorporating general regression analysis was conducted. A reliable model of the correlation between the physicochemical properties of the APIs and the tablet properties was thus constructed. From the correlation model, we clarified the detailed contributions of each physicochemical property to the tablet attributes.
本研究旨在创建一个片剂数据库,用于设计片剂配方。我们专注于活性药物成分 (API) 对片剂性质(如硬度和崩解时间 (DT))的贡献。在研究 API 的影响之前,我们根据扩展单纯形搜索对片剂基础配方(安慰剂片剂)进行了优化。优化后的安慰剂片剂具有足够的硬度和快速崩解。然后,我们测试了 14 种化合物作为模型 API。使用 Kohonen 的自组织映射对 API 的物理化学性质进行了特征描述。我们还将 API 掺入到最佳安慰剂片剂中制备模型片剂,然后检查了片剂的性质,包括拉伸强度和 DT。基于实验数据,我们进行了包含一般回归分析的集成人工神经网络。从而构建了 API 的物理化学性质与片剂性质之间相关性的可靠模型。从相关模型中,我们阐明了每个物理化学性质对片剂属性的详细贡献。