文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

开发一种比较对接方案以预测肽选择性特征:钾通道毒素的研究。

Developing a comparative docking protocol for the prediction of peptide selectivity profiles: investigation of potassium channel toxins.

机构信息

School of Physics, Building A28, University of Sydney, NSW 2006, Australia.

出版信息

Toxins (Basel). 2012 Feb;4(2):110-38. doi: 10.3390/toxins4020110. Epub 2012 Feb 6.


DOI:10.3390/toxins4020110
PMID:22474570
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3317111/
Abstract

During the development of selective peptides against highly homologous targets, a reliable tool is sought that can predict information on both mechanisms of binding and relative affinities. These tools must first be tested on known profiles before application on novel therapeutic candidates. We therefore present a comparative docking protocol in HADDOCK using critical motifs, and use it to "predict" the various selectivity profiles of several major αKTX scorpion toxin families versus K(v)1.1, K(v)1.2 and K(v)1.3. By correlating results across toxins of similar profiles, a comprehensive set of functional residues can be identified. Reasonable models of channel-toxin interactions can be then drawn that are consistent with known affinity and mutagenesis. Without biological information on the interaction, HADDOCK reproduces mechanisms underlying the universal binding of αKTX-2 toxins, and K(v)1.3 selectivity of αKTX-3 toxins. The addition of constraints encouraging the critical lysine insertion confirms these findings, and gives analogous explanations for other families, including models of partial pore-block in αKTX-6. While qualitatively informative, the HADDOCK scoring function is not yet sufficient for accurate affinity-ranking. False minima in low-affinity complexes often resemble true binding in high-affinity complexes, despite steric/conformational penalties apparent from visual inspection. This contamination significantly complicates energetic analysis, although it is usually possible to obtain correct ranking via careful interpretation of binding-well characteristics and elimination of false positives. Aside from adaptations to the broader potassium channel family, we suggest that this strategy of comparative docking can be extended to other channels of interest with known structure, especially in cases where a critical motif exists to improve docking effectiveness.

摘要

在开发针对高度同源靶点的选择性肽的过程中,人们寻求一种可靠的工具,该工具能够预测结合机制和相对亲和力的信息。在将这些工具应用于新的治疗候选物之前,必须首先在已知的图谱上进行测试。因此,我们提出了一种使用关键模体的 HADDOCK 比较对接方案,并将其用于“预测”几种主要的 αKTX 蝎毒素家族与 K(v)1.1、K(v)1.2 和 K(v)1.3 的各种选择性图谱。通过对具有相似图谱的毒素的结果进行关联,可以确定一组全面的功能残基。然后可以绘制与已知亲和力和诱变一致的合理通道-毒素相互作用模型。在没有交互作用的生物学信息的情况下,HADDOCK 再现了 αKTX-2 毒素普遍结合的机制,以及 αKTX-3 毒素对 K(v)1.3 的选择性。添加鼓励关键赖氨酸插入的约束条件证实了这些发现,并为其他家族提供了类似的解释,包括 αKTX-6 的部分孔阻塞模型。虽然定性地提供了信息,但 HADDOCK 评分函数还不足以进行准确的亲和力排名。低亲和力复合物中的假最小点通常类似于高亲和力复合物中的真实结合点,尽管从视觉检查来看,空间/构象惩罚是明显的。尽管通过仔细解释结合阱特征和消除假阳性可以获得正确的排序,但这种污染极大地复杂化了能量分析。除了适应更广泛的钾通道家族外,我们建议可以将这种比较对接策略扩展到具有已知结构的其他感兴趣的通道,特别是在存在关键模体以提高对接效率的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8eb/3317111/1a02fbb095ce/toxins-04-00110-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8eb/3317111/5a3692c14bc0/toxins-04-00110-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8eb/3317111/440d37e0e4e8/toxins-04-00110-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8eb/3317111/f7ab0c84c047/toxins-04-00110-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8eb/3317111/7650f1f52f2f/toxins-04-00110-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8eb/3317111/e99a7f77860a/toxins-04-00110-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8eb/3317111/dc6deb0ef5d4/toxins-04-00110-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8eb/3317111/887a59db4a04/toxins-04-00110-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8eb/3317111/1a02fbb095ce/toxins-04-00110-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8eb/3317111/5a3692c14bc0/toxins-04-00110-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8eb/3317111/440d37e0e4e8/toxins-04-00110-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8eb/3317111/f7ab0c84c047/toxins-04-00110-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8eb/3317111/7650f1f52f2f/toxins-04-00110-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8eb/3317111/e99a7f77860a/toxins-04-00110-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8eb/3317111/dc6deb0ef5d4/toxins-04-00110-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8eb/3317111/887a59db4a04/toxins-04-00110-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8eb/3317111/1a02fbb095ce/toxins-04-00110-g008.jpg

相似文献

[1]
Developing a comparative docking protocol for the prediction of peptide selectivity profiles: investigation of potassium channel toxins.

Toxins (Basel). 2012-2-6

[2]
Interaction of agitoxin2, charybdotoxin, and iberiotoxin with potassium channels: selectivity between voltage-gated and Maxi-K channels.

Proteins. 2003-8-1

[3]
Brownian dynamics simulations of the recognition of the scorpion toxin maurotoxin with the voltage-gated potassium ion channels.

Biophys J. 2002-11

[4]
The 'functional' dyad of scorpion toxin Pi1 is not itself a prerequisite for toxin binding to the voltage-gated Kv1.2 potassium channels.

Biochem J. 2004-1-1

[5]
Hemitoxin, the first potassium channel toxin from the venom of the Iranian scorpion Hemiscorpius lepturus.

FEBS J. 2008-9

[6]
Exploring structural features of the interaction between the scorpion toxinCnErg1 and ERG K+ channels.

Proteins. 2004-8-1

[7]
Cobatoxin 1 from Centruroides noxius scorpion venom: chemical synthesis, three-dimensional structure in solution, pharmacology and docking on K+ channels.

Biochem J. 2004-1-1

[8]
Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.

Toxicon. 2004-6-15

[9]
Brownian dynamics simulations of interaction between scorpion toxin Lq2 and potassium ion channel.

Biophys J. 2001-4

[10]
Anuroctoxin, a new scorpion toxin of the alpha-KTx 6 subfamily, is highly selective for Kv1.3 over IKCa1 ion channels of human T lymphocytes.

Mol Pharmacol. 2005-4

引用本文的文献

[1]
New High-Affinity Peptide Ligands for Kv1.2 Channel: Selective Blockers and Fluorescent Probes.

Cells. 2024-12-18

[2]
Interactions of the Kv1.1 Channel with Peptide Pore Blockers: A Fluorescent Analysis on Mammalian Cells.

Membranes (Basel). 2023-7-4

[3]
Examining the interactions scorpion venom peptides (HP1090, Meucin-13, and Meucin-18) with the receptor binding domain of the coronavirus spike protein to design a mutated therapeutic peptide.

J Mol Graph Model. 2021-9

[4]
Structural Determinants Mediating Tertiapin Block of Neuronal Kir3.2 Channels.

Biochemistry. 2020-2-7

[5]
Snails In Silico: A Review of Computational Studies on the Conopeptides.

Mar Drugs. 2019-3-1

[6]
Computational study of aggregation mechanism in human lysozyme[D67H].

PLoS One. 2017-5-3

[7]
Molecular Simulations of Disulfide-Rich Venom Peptides with Ion Channels and Membranes.

Molecules. 2017-2-27

[8]
Biobetters From an Integrated Computational/Experimental Approach.

Comput Struct Biotechnol J. 2017-1-16

[9]
Complexes of Peptide Blockers with Kv1.6 Pore Domain: Molecular Modeling and Studies with KcsA-Kv1.6 Channel.

J Neuroimmune Pharmacol. 2016-9-17

[10]
Modeling of the Binding of Peptide Blockers to Voltage-Gated Potassium Channels: Approaches and Evidence.

Acta Naturae. 2016

本文引用的文献

[1]
Standard Free Energy of Binding from a One-Dimensional Potential of Mean Force.

J Chem Theory Comput. 2009-4-14

[2]
The crystal structure of a voltage-gated sodium channel.

Nature. 2011-7-10

[3]
Accurate determination of the binding free energy for KcsA-charybdotoxin complex from the potential of mean force calculations with restraints.

Biophys J. 2011-5-18

[4]
Potassium channels as a potential therapeutic target for trigeminal neuropathic and inflammatory pain.

Mol Pain. 2011-1-10

[5]
Acid-sensing ion channels (ASICs): pharmacology and implication in pain.

Pharmacol Ther. 2010-8-31

[6]
Dynamic ligand-induced-fit simulation via enhanced conformational samplings and ensemble dockings: a survivin example.

J Phys Chem B. 2010-4-22

[7]
Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark.

J Proteome Res. 2010-5-7

[8]
A designer ligand specific for Kv1.3 channels from a scorpion neurotoxin-based library.

Proc Natl Acad Sci U S A. 2009-12-10

[9]
The K+ channels K(Ca)3.1 and K(v)1.3 as novel targets for asthma therapy.

Br J Pharmacol. 2009-8

[10]
Protein-protein docking dealing with the unknown.

J Comput Chem. 2010-1-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索