Department of Biotechnology; University of the Western Cape; Bellville, South Africa.
Plant Signal Behav. 2012 Mar;7(3):349-60. doi: 10.4161/psb.18967. Epub 2012 Mar 1.
Salinity stress causes ionic stress (mainly from high Na⁺ and Cl⁻ levels) and osmotic stress (as a result of inhibition of water uptake by roots and amplified water loss from plant tissue), resulting in cell death and inhibition of growth and ultimately adversely reducing crop productivity. In this report, changes in root nitric oxide content, shoot and root biomass, root H₂O₂ content, root lipid peroxidation, root cell death, root caspase-like enzymatic activity, root antioxidant enzymatic activity and root ascorbate and glutathione contents/redox states were investigated in maize (Zea mays L. cv Silverking) after long-term (21 d) salt stress (150 mM NaCl) with or without exogenously applied nitric oxide generated from the nitric oxide donor 2,2'-(Hydroxynitrosohydrazano)bis-ethane. In addition to reduced shoot and root biomass, salt stress increased the nitric oxide and H₂O₂ contents in the maize roots and resulted in elevated lipid peroxidation, caspase-like activity and cell death in the roots. Altered antioxidant enzymatic activities, along with changes in ascorbate and glutathione contents/redox status were observed in the roots in response to salt stress. The detrimental effects of salt stress in the roots were reversed by exogenously applied nitric oxide. These results demonstrate that exogenously applied nitric oxide confers salt stress tolerance in maize by reducing salt stress-induced oxidative stress and caspase-like activity through a process that limits accumulation of reactive oxygen species via enhanced antioxidant enzymatic activity.
盐胁迫导致离子胁迫(主要来自高 Na⁺和 Cl⁻水平)和渗透胁迫(由于根对水的吸收抑制和植物组织水分流失加剧),导致细胞死亡,生长受到抑制,最终降低作物产量。在本报告中,研究了玉米(Zea mays L. cv Silverking)在长期(21 天)盐胁迫(150 mM NaCl)以及是否外加由一氧化氮供体 2,2'-(羟基亚硝基羟脒基)乙烷产生的外源一氧化氮后,根中一氧化氮含量、地上部和根生物量、根 H₂O₂含量、根脂质过氧化、根细胞死亡、根半胱天冬酶样酶活性、根抗氧化酶活性以及根抗坏血酸和谷胱甘肽含量/氧化还原状态的变化。除了地上部和根生物量减少外,盐胁迫还增加了玉米根中的一氧化氮和 H₂O₂含量,导致根中脂质过氧化、半胱天冬酶样活性和细胞死亡增加。抗氧化酶活性的改变以及抗坏血酸和谷胱甘肽含量/氧化还原状态的变化在根中对盐胁迫作出响应。外加的一氧化氮逆转了根中盐胁迫的有害影响。这些结果表明,外加的一氧化氮通过降低盐胁迫诱导的氧化应激和半胱天冬酶样活性,增强抗氧化酶活性限制活性氧的积累,从而赋予玉米耐盐性。