Suppr超能文献

基于先验分布的新矩闭合及其在流行病动力学中的应用。

New moment closures based on a priori distributions with applications to epidemic dynamics.

机构信息

School of Mathematical and Physical Sciences, Department of Mathematics, University of Sussex, Falmer, Brighton BN1 9QH, UK.

出版信息

Bull Math Biol. 2012 Jul;74(7):1501-15. doi: 10.1007/s11538-012-9723-3. Epub 2012 Apr 4.

Abstract

Recently, research that focuses on the rigorous understanding of the relation between simulation and/or exact models on graphs and approximate counterparts has gained lots of momentum. This includes revisiting the performance of classic pairwise models with closures at the level of pairs and/or triples as well as effective-degree-type models and those based on the probability generating function formalism. In this paper, for a fully connected graph and the simple SIS (susceptible-infected-susceptible) epidemic model, a novel closure is introduced. This is done via using the equations for the moments of the distribution describing the number of infecteds at all times combined with the empirical observations that this is well described/approximated by a binomial distribution with time dependent parameters. This assumption allows us to express higher order moments in terms of lower order ones and this leads to a new closure. The significant feature of the new closure is that the difference of the exact system, given by the Kolmogorov equations, from the solution of the newly defined approximate system is of order 1/N(2). This is in contrast with the O(1/N) difference corresponding to the approximate system obtained via the classic triple closure. The fully connected nature of the graph also allows us to interpret pairwise equations in terms of the moments and thus treat closures and the two approximate models within the same framework. Finally, the applicability and limitations of the new methodology is discussed in detail.

摘要

最近,专注于严格理解图上的模拟和/或精确模型与近似对应物之间关系的研究获得了很大的动力。这包括重新审视经典成对模型的性能,这些模型的闭包在对和/或三重对的层面上,以及有效度数类型的模型和基于概率生成函数形式主义的模型。在本文中,对于完全连通图和简单的 SIS(易感-感染-易感)传染病模型,引入了一种新的闭包。这是通过使用描述在任何时候感染人数的分布的矩方程,并结合经验观察,即这可以很好地用具有时间相关参数的二项式分布来描述/近似来实现的。该假设允许我们用低阶矩来表示高阶矩,从而得到一个新的闭包。新闭包的显著特点是,由柯尔莫哥洛夫方程给出的精确系统与新定义的近似系统的解之间的差异是 O(1/N^2)的阶数。这与通过经典三重闭包获得的近似系统的 O(1/N)差异形成对比。图的完全连通性质还允许我们根据矩来解释成对方程,从而在同一框架内处理闭包和两个近似模型。最后,详细讨论了新方法的适用性和局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验