Suppr超能文献

运动模糊图像复原性能建模。

Modeling the performance of image restoration from motion blur.

出版信息

IEEE Trans Image Process. 2012 Aug;21(8):3502-17. doi: 10.1109/TIP.2012.2192126. Epub 2012 Apr 3.

Abstract

When dealing with motion blur there is an inevitable trade-off between the amount of blur and the amount of noise in the acquired images. The effectiveness of any restoration algorithm typically depends on these amounts, and it is difficult to find their best balance in order to ease the restoration task. To face this problem, we provide a methodology for deriving a statistical model of the restoration performance of a given deblurring algorithm in case of arbitrary motion. Each restoration-error model allows us to investigate how the restoration performance of the corresponding algorithm varies as the blur due to motion develops. Our modeling treats the point-spread-function trajectories as random processes and, following a Monte-Carlo approach, expresses the restoration performance as the expectation of the restoration error conditioned on some motion-randomness descriptors and on the exposure time. This allows to coherently encompass various imaging scenarios, including camera shake and uniform (rectilinear) motion, and, for each of these, identify the specific exposure time that maximizes the image quality after deblurring.

摘要

在处理运动模糊时,获取的图像中的模糊量和噪声量之间不可避免地存在权衡。任何恢复算法的有效性通常取决于这些量,并且很难找到它们的最佳平衡点,以便简化恢复任务。为了应对这个问题,我们提供了一种方法,用于在任意运动的情况下推导出给定去模糊算法的恢复性能的统计模型。每个恢复误差模型都允许我们研究对应算法的恢复性能如何随着运动引起的模糊度的发展而变化。我们的模型将点扩散函数轨迹视为随机过程,并采用蒙特卡罗方法,根据一些运动随机性描述符和曝光时间来表示恢复误差的条件期望。这允许一致地包含各种成像场景,包括相机抖动和均匀(直线)运动,并为每个场景确定在去模糊后最大程度提高图像质量的特定曝光时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验