Suppr超能文献

Lane-GAN:一种用于高速和复杂路况下驾驶员辅助系统的鲁棒车道检测网络。

Lane-GAN: A Robust Lane Detection Network for Driver Assistance System in High Speed and Complex Road Conditions.

作者信息

Liu Yan, Wang Jingwen, Li Yujie, Li Canlin, Zhang Weizheng

机构信息

School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.

School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin 541004, China.

出版信息

Micromachines (Basel). 2022 Apr 30;13(5):716. doi: 10.3390/mi13050716.

Abstract

Lane detection is an important and challenging part of autonomous driver assistance systems and other advanced assistance systems. The presence of road potholes and obstacles, complex road environments (illumination, occlusion, etc.) are ubiquitous, will cause the blur of images, which is captured by the vision perception system in the lane detection task. To improve the lane detection accuracy of blurred images, a network (Lane-GAN) for lane line detection is proposed in the paper, which is robust to blurred images. First, real and complex blur kernels are simulated to construct a blurred image dataset, and the improved GAN network is used to reinforce the lane features of the blurred image, and finally the feature information is further enriched with a recurrent feature transfer aggregator. Extensive experimental results demonstrate that the proposed network can get robust detection results in complex environments, especially for blurred lane lines. Compared with the SOTA detector, the proposed detector achieves a larger gain. The proposed method can enhance the lane detail features of the blurred image, improving the detection accuracy of the blurred lane effectively, in the driver assistance system in high speed and complex road conditions.

摘要

车道检测是自动驾驶辅助系统和其他先进辅助系统中重要且具有挑战性的一部分。路面坑洼和障碍物的存在、复杂的道路环境(光照、遮挡等)普遍存在,会导致图像模糊,而这是车道检测任务中视觉感知系统所捕获的图像。为了提高模糊图像的车道检测精度,本文提出了一种用于车道线检测的网络(Lane - GAN),它对模糊图像具有鲁棒性。首先,模拟真实且复杂的模糊核来构建模糊图像数据集,使用改进的GAN网络增强模糊图像的车道特征,最后通过循环特征转移聚合器进一步丰富特征信息。大量实验结果表明,所提出的网络在复杂环境中能够获得鲁棒的检测结果,特别是对于模糊的车道线。与当前最优的检测器相比,所提出的检测器实现了更大的提升。所提出的方法能够增强模糊图像的车道细节特征,在高速和复杂路况下的驾驶员辅助系统中有效地提高模糊车道的检测精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746b/9142959/06de796e91f6/micromachines-13-00716-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验