Suppr超能文献

基于字典对的图像超分辨率重建。

Coupled dictionary training for image super-resolution.

出版信息

IEEE Trans Image Process. 2012 Aug;21(8):3467-78. doi: 10.1109/TIP.2012.2192127. Epub 2012 Apr 3.

Abstract

In this paper, we propose a novel coupled dictionary training method for single image super-resolution based on patchwise sparse recovery, where the learned couple dictionaries relate the low- and high-resolution image patch spaces via sparse representation. The learning process enforces that the sparse representation of a low-resolution image patch in terms of the low-resolution dictionary can well reconstruct its underlying high-resolution image patch with the dictionary in the highresolution image patch space. We model the learning problem as a bilevel optimization problem, where the optimization includes an 1-norm minimization problem in its constraints. Implicit differentiation is employed to calculate the desired gradient for stochastic gradient descent. We demonstrate that our coupled dictionary learning method can outperform the existing joint dictionary training method both quantitatively and qualitatively. Furthermore, for real applications, we speed up the algorithm approximately 10 times by learning a neural network model for fast sparse inference and selectively processing only those visually salient regions. Extensive experimental comparisons with stateof- the-art super-resolution algorithms validate the effectiveness of our proposed approach.

摘要

在本文中,我们提出了一种基于补丁稀疏恢复的单图像超分辨率的新型耦合字典训练方法,其中学习到的耦合字典通过稀疏表示将低分辨率图像补丁空间与高分辨率图像补丁空间相关联。学习过程强制要求,低分辨率图像补丁根据低分辨率字典的稀疏表示可以很好地用高分辨率图像补丁空间中的字典来重建其潜在的高分辨率图像补丁。我们将学习问题建模为一个双层优化问题,其中优化在约束中包含一个 1 范数最小化问题。隐式微分用于计算随机梯度下降的所需梯度。我们证明,我们的耦合字典学习方法在定量和定性上都可以优于现有的联合字典训练方法。此外,对于实际应用,我们通过学习用于快速稀疏推理的神经网络模型并选择性地仅处理那些视觉上明显的区域,将算法加速约 10 倍。与最先进的超分辨率算法的广泛实验比较验证了我们提出的方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验