Suppr超能文献

基于正则化正交匹配追踪的K-SVD训练字典的稀疏编码图像超分辨率

Sparse coded image super-resolution using K-SVD trained dictionary based on regularized orthogonal matching pursuit.

作者信息

Sajjad Muhammad, Mehmood Irfan, Baik Sung Wook

机构信息

Digital Contents Research Institute, Sejong University, Seoul, Korea.

出版信息

Biomed Mater Eng. 2015;26 Suppl 1:S1399-407. doi: 10.3233/BME-151438.

Abstract

Image super-resolution (SR) plays a vital role in medical imaging that allows a more efficient and effective diagnosis process. Usually, diagnosing is difficult and inaccurate from low-resolution (LR) and noisy images. Resolution enhancement through conventional interpolation methods strongly affects the precision of consequent processing steps, such as segmentation and registration. Therefore, we propose an efficient sparse coded image SR reconstruction technique using a trained dictionary. We apply a simple and efficient regularized version of orthogonal matching pursuit (ROMP) to seek the coefficients of sparse representation. ROMP has the transparency and greediness of OMP and the robustness of the L1-minization that enhance the dictionary learning process to capture feature descriptors such as oriented edges and contours from complex images like brain MRIs. The sparse coding part of the K-SVD dictionary training procedure is modified by substituting OMP with ROMP. The dictionary update stage allows simultaneously updating an arbitrary number of atoms and vectors of sparse coefficients. In SR reconstruction, ROMP is used to determine the vector of sparse coefficients for the underlying patch. The recovered representations are then applied to the trained dictionary, and finally, an optimization leads to high-resolution output of high-quality. Experimental results demonstrate that the super-resolution reconstruction quality of the proposed scheme is comparatively better than other state-of-the-art schemes.

摘要

图像超分辨率(SR)在医学成像中起着至关重要的作用,它能使诊断过程更高效、更有效。通常,从低分辨率(LR)和有噪声的图像进行诊断既困难又不准确。通过传统插值方法进行分辨率增强会严重影响后续处理步骤(如图像分割和配准)的精度。因此,我们提出一种使用训练字典的高效稀疏编码图像SR重建技术。我们应用一种简单高效的正则化正交匹配追踪(ROMP)来寻找稀疏表示的系数。ROMP兼具正交匹配追踪(OMP)的透明性和贪婪性以及L1最小化的鲁棒性,这增强了字典学习过程,使其能够从诸如脑部磁共振成像(MRI)等复杂图像中捕捉特征描述符,如实线边缘和轮廓。K-SVD字典训练过程的稀疏编码部分通过用ROMP替代OMP进行了修改。字典更新阶段允许同时更新任意数量的原子和稀疏系数向量。在SR重建中,ROMP用于确定基础图像块的稀疏系数向量。然后将恢复的表示应用于训练字典,最后通过优化得到高质量的高分辨率输出。实验结果表明,所提方案的超分辨率重建质量相对优于其他现有方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验