Suppr超能文献

利用新一代测序技术解决 17q21.31 微缺失综合征的断裂点问题。

Resolving the breakpoints of the 17q21.31 microdeletion syndrome with next-generation sequencing.

机构信息

Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.

出版信息

Am J Hum Genet. 2012 Apr 6;90(4):599-613. doi: 10.1016/j.ajhg.2012.02.013.

Abstract

Recurrent deletions have been associated with numerous diseases and genomic disorders. Few, however, have been resolved at the molecular level because their breakpoints often occur in highly copy-number-polymorphic duplicated sequences. We present an approach that uses a combination of somatic cell hybrids, array comparative genomic hybridization, and the specificity of next-generation sequencing to determine breakpoints that occur within segmental duplications. Applying our technique to the 17q21.31 microdeletion syndrome, we used genome sequencing to determine copy-number-variant breakpoints in three deletion-bearing individuals with molecular resolution. For two cases, we observed breakpoints consistent with nonallelic homologous recombination involving only H2 chromosomal haplotypes, as expected. Molecular resolution revealed that the breakpoints occurred at different locations within a 145 kbp segment of >99% identity and disrupt KANSL1 (previously known as KANSL1). In the remaining case, we found that unequal crossover occurred interchromosomally between the H1 and H2 haplotypes and that this event was mediated by a homologous sequence that was once again missing from the human reference. Interestingly, the breakpoints mapped preferentially to gaps in the current reference genome assembly, which we resolved in this study. Our method provides a strategy for the identification of breakpoints within complex regions of the genome harboring high-identity and copy-number-polymorphic segmental duplication. The approach should become particularly useful as high-quality alternate reference sequences become available and genome sequencing of individuals' DNA becomes more routine.

摘要

反复出现的缺失与许多疾病和基因组紊乱有关。然而,由于其断点通常发生在高度拷贝数多态性重复序列中,因此很少有断点在分子水平上得到解决。我们提出了一种方法,该方法结合体细胞杂种、阵列比较基因组杂交和下一代测序的特异性来确定发生在片段重复内的断点。我们将该技术应用于 17q21.31 微缺失综合征,使用基因组测序对三个携带缺失的个体进行了分子分辨率的拷贝数变异断点分析。对于两个病例,我们观察到的断点与非等位同源重组一致,仅涉及 H2 染色体单倍型,这是预期的。分子分辨率显示,断点发生在 145 kbp 以上的同源性为 99%的片段内的不同位置,并破坏 KANSL1(以前称为 KANSL1)。在剩余的病例中,我们发现 H1 和 H2 单倍型之间发生了非均等交叉,并且该事件由一个同源序列介导,该同源序列再次从人类参考序列中缺失。有趣的是,断点优先映射到当前参考基因组组装中的间隙,我们在本研究中解决了这些间隙。我们的方法为鉴定基因组中含有高同源性和拷贝数多态性片段重复的复杂区域内的断点提供了一种策略。随着高质量的替代参考序列的出现以及个体 DNA 的基因组测序变得更加常规,该方法应该会变得特别有用。

相似文献

引用本文的文献

7
Human adaptation and evolution by segmental duplication.通过节段重复实现的人类适应与进化。
Curr Opin Genet Dev. 2016 Dec;41:44-52. doi: 10.1016/j.gde.2016.08.001. Epub 2016 Aug 30.
10
Human Structural Variation: Mechanisms of Chromosome Rearrangements.人类结构变异:染色体重排机制
Trends Genet. 2015 Oct;31(10):587-599. doi: 10.1016/j.tig.2015.05.010. Epub 2015 Jul 22.

本文引用的文献

1
Whole-genome molecular haplotyping of single cells.单细胞全基因组分子单体型分析。
Nat Biotechnol. 2011 Jan;29(1):51-7. doi: 10.1038/nbt.1739. Epub 2010 Dec 19.
6
Phenotypic variability and genetic susceptibility to genomic disorders.基因组疾病的表型变异性和遗传易感性。
Hum Mol Genet. 2010 Oct 15;19(R2):R176-87. doi: 10.1093/hmg/ddq366. Epub 2010 Aug 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验