Division of Molecular and Materials Simulation, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
Biomaterials. 2012 Jun;33(19):4965-73. doi: 10.1016/j.biomaterials.2012.03.044. Epub 2012 Apr 5.
In this work, an N-varied dissipative particle dynamics (DPD) simulation technique is applied to investigate detailed endocytosis kinetics for ligand-coated nanoparticles with different shapes, including sphere-, rod- and disk-shaped nanoparticles. Our results indicate that the rotation of nanoparticles, which is one of the most important mechanisms for endocytosis of shaped nanoparticle, regulates the competition between ligand-receptor binding and membrane deformation. Shape anisotropy of nanoparticles divides the whole internalization process into two stages: membrane invagination and nanoparticle wrapping. Due to the strong ligand-receptor binding energy, the membrane invagination stage is featured by the rotation of nanoparticles to maximize their contact area with the membrane. While the kinetics of the wrapping stage is mainly dominated by the part of nanoparticles with the largest local mean curvature, at which the membrane is most strongly bent. Therefore, nanoparticles with various shapes display different favorable orientations for the two stages, and one or two orientation rearrangement may be required during the endocytosis process. Our simulation results also demonstrate that the shape anisotropy of nanoparticles generates a heterogeneous membrane curvature distribution and might break the symmetry of the internalization pathway, and hence induce an asymmetric endocytosis.
在这项工作中,我们应用了一种 N 变耗散粒子动力学(DPD)模拟技术,研究了不同形状的配体包覆纳米粒子的详细内吞动力学,包括球形、棒状和盘形纳米粒子。我们的结果表明,纳米粒子的旋转是形状纳米粒子内吞作用的最重要机制之一,它调节了配体-受体结合和膜变形之间的竞争。纳米粒子的形状各向异性将整个内化过程分为两个阶段:膜内陷和纳米粒子包裹。由于强的配体-受体结合能,膜内陷阶段的特征是纳米粒子的旋转,以最大化它们与膜的接触面积。而包裹阶段的动力学主要由具有最大局部平均曲率的纳米粒子部分主导,在该阶段,膜的弯曲最强。因此,不同形状的纳米粒子在这两个阶段显示出不同的有利取向,并且在内吞过程中可能需要一个或两个取向重排。我们的模拟结果还表明,纳米粒子的形状各向异性产生了不均匀的膜曲率分布,并可能打破内化途径的对称性,从而诱导不对称的内吞作用。