Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
J Phys Chem B. 2012 May 10;116(18):5329-41. doi: 10.1021/jp210954v. Epub 2012 May 1.
The mercapto group of cysteine (Cys) is a predominant target for oxidative modification, where one-electron oxidation leads to the formation of Cys thiyl radicals, CysS(•). These Cys thiyl radicals enter 1,2- and 1,3-hydrogen transfer reactions, for which rate constants are reported in this paper. The products of these 1,2- and 1,3-hydrogen transfer reactions are carbon-centered radicals at position C(3) (α-mercaptoalkyl radicals) and C(2) ((•)C(α) radicals) of Cys, respectively. Both processes can be monitored separately in Cys analogues such as cysteamine (CyaSH) and penicillamine (PenSH). At acidic pH, thiyl radicals from CyaSH permit only the 1,2-hydrogen transfer according to equilibrium 12, (+)H(3)NCH(2)CH(2)S(• )⇌ (+)H(3)NCH(2)(•)CH-SH, where rate constants for forward and reverse reaction are k(12) ≈ 10(5) s(-1) and k(-12) ≈ 1.5 × 10(5)s(-1), respectively. In contrast, only the 1,3-hydrogen transfer is possible for thiyl radicals from PenSH according to equilibrium 14, ((+)H(3)N/CO(2)H)C(α)-C(CH(3))(2)-S(•) ⇌ ((+)H(3)N/CO(2)H)(•)C(α)-C(CH(3))(2)-SH, where rate constants for the forward and the reverse reaction are k(14) = 8 × 10(4) s(-1) and k(-14) = 1.4 × 10(6) s(-1). The (•)C(α) radicals from PenSH and Cys have the additional opportunity for β-elimination of HS(•)/S(•-), which proceeds with k(39) ≈ (3 ± 1) × 10(4) s(-1) from (•)C(α) radicals from PenSH and k(-34) ≈ 5 × 10(3) s(-1) from (•)C(α) radicals from Cys. The rate constants quantified for the 1,2- and 1,3-hydrogen transfer reactions can be used as a basis to calculate similar processes for Cys thiyl radicals in proteins, where hydrogen transfer reactions, followed by the addition of oxygen, may lead to the irreversible modification of target proteins.
半胱氨酸(Cys)的巯基是氧化修饰的主要靶点,其中单电子氧化导致 Cys 硫基自由基(CysS(•))的形成。这些 Cys 硫基自由基进入 1,2-和 1,3-氢转移反应,本文报道了这些反应的速率常数。这些 1,2-和 1,3-氢转移反应的产物分别是 Cys 位置 C(3)(α-巯基烷基自由基)和 C(2)((•)C(α)自由基)处的碳中心自由基。这两个过程都可以在半胱氨酸类似物(如半胱胺(CyaSH)和青霉素胺(PenSH))中分别监测。在酸性 pH 下,CyaSH 的硫基自由基仅允许根据平衡 12 进行 1,2-氢转移,(+)H(3)NCH(2)CH(2)S(•) ⇌ (+)H(3)NCH(2)(•)CH-SH,其中正向和反向反应的速率常数分别为 k(12) ≈ 10(5) s(-1)和 k(-12) ≈ 1.5 × 10(5)s(-1)。相比之下,根据平衡 14,PenSH 的硫基自由基仅允许 1,3-氢转移,((+)H(3)N/CO(2)H)C(α)-C(CH(3))(2)-S(•) ⇌ ((+)H(3)N/CO(2)H)(•)C(α)-C(CH(3))(2)-SH,其中正向和反向反应的速率常数分别为 k(14) = 8 × 10(4) s(-1)和 k(-14) = 1.4 × 10(6) s(-1)。来自 PenSH 和 Cys 的(•)C(α)自由基还有 HS(•)/S(•)-β消除的额外机会,其反应速率常数 k(39) ≈ (3 ± 1) × 10(4) s(-1)来自 PenSH 的(•)C(α)自由基,k(-34) ≈ 5 × 10(3) s(-1)来自 Cys 的(•)C(α)自由基。量化的 1,2-和 1,3-氢转移反应速率常数可用于计算蛋白质中 Cys 硫基自由基的类似过程,其中氢转移反应,随后加入氧,可能导致靶蛋白的不可逆修饰。