Zahrádka Jaromír, van Heusden G Paul H, Sychrová Hana
Department of Membrane Transport, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., 142 20 Prague 4, Czech Republic.
Biochim Biophys Acta. 2012 Jul;1820(7):849-58. doi: 10.1016/j.bbagen.2012.03.013. Epub 2012 Mar 30.
In yeast, 14-3-3 proteins bind to hundreds of phosphorylated proteins and play a role in the regulation of many processes including tolerance to NaCl. However, the mechanism of 14-3-3 involvement in the cell answer to salt or osmotic stresses is weakly understood.
We studied the role of the Saccharomyces cerevisiae 14-3-3 homologs Bmh1 and Bmh2 in the regulation of alkali-metal-cation homeostasis using the genetic-interaction approach. Obtained results were confirmed with the Bimolecular-Fluorescence-Complementation method.
Deletion of BMH1, encoding the major 14-3-3 isoform, resulted in an increased sensitivity to Na+, Li+ and K+ and to cationic drugs but did not affect membrane potential. This bmh1Δ phenotype was complemented by overexpression of BMH2. Testing the genetic interaction between BMH genes and genes encoding plasma-membrane cation transporters revealed, that 14-3-3 proteins neither interact with the potassium uptake systems, nor with the potassium-specific channel nor with the Na+(K+)-ATPases. Instead, a genetic interaction was identified between BMH1 and NHA1 which encodes an Na+(K+)/H+ antiporter. In addition, a physical interaction between 14-3-3 proteins and the Nha1 antiporter was shown. This interaction does not depend on the phosphorylation of the Nha1 antiporter by Hog1 kinase. Our results uncovered a previously unknown interaction partner of yeast 14-3-3 proteins and provided evidence for the previously hypothesized involvement of Bmh proteins in yeast salt tolerance.
Our results showed for the first time that the yeast 14-3-3 proteins and an alkali-metal-cation efflux system interact and that this interaction enhances the cell survival upon salt stress.
在酵母中,14-3-3蛋白可与数百种磷酸化蛋白结合,并在包括对NaCl耐受性在内的许多过程的调控中发挥作用。然而,人们对14-3-3参与细胞对盐或渗透胁迫反应的机制了解甚少。
我们使用遗传相互作用方法研究了酿酒酵母14-3-3同源物Bmh1和Bmh2在碱金属阳离子稳态调控中的作用。通过双分子荧光互补法对所得结果进行了验证。
编码主要14-3-3异构体的BMH1缺失导致对Na+、Li+和K+以及阳离子药物的敏感性增加,但不影响膜电位。BMH2的过表达可弥补bmh1Δ表型。对BMH基因与编码质膜阳离子转运蛋白的基因之间的遗传相互作用进行检测发现,14-3-3蛋白既不与钾摄取系统相互作用,也不与钾特异性通道或Na+(K+)-ATP酶相互作用。相反,在BMH1和编码Na+(K+)/H+反向转运蛋白的NHA1之间发现了遗传相互作用。此外,还显示了14-3-3蛋白与Nha1反向转运蛋白之间的物理相互作用。这种相互作用不依赖于Hog1激酶对Nha1反向转运蛋白的磷酸化。我们的结果揭示了酵母14-3-3蛋白以前未知的相互作用伙伴,并为之前假设的Bmh蛋白参与酵母耐盐性提供了证据。
我们的结果首次表明,酵母14-3-3蛋白与碱金属阳离子外排系统相互作用,并且这种相互作用可增强细胞在盐胁迫下的存活能力。