Suppr超能文献

一种研究活体有髓轴突中线粒体局部融合的新方法。

A novel method to study the local mitochondrial fusion in myelinated axons in vivo.

机构信息

Dept. of Neuroscience, 1300 University Avenue, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.

出版信息

J Neurosci Methods. 2012 May 30;207(1):51-8. doi: 10.1016/j.jneumeth.2012.03.013. Epub 2012 Mar 31.

Abstract

Mitochondrial remodeling (replication, fission/fusion) is a dynamically regulated process with diverse functions in neurons. A myelinated axon is an extension from the cell soma of a fully differentiated neuron. Mitochondria, once synthesized in the cell body, enter the axon displaying robust trafficking and accumulation at nodes of Ranvier to match metabolic needs. This long-distance deployment of mitochondria to axons raises the issue of whether myelinated axons can function independently of the cell body to execute mitochondrial remodeling to match local demands. Mitochondrial fusion has been suggested to occur in axons in simple neuronal cultures in vitro. However, whether such events occur in vivo in an intact nervous system remains unanswered. Here we describe a novel technique which allows monitoring of mitochondrial fusion in intact sciatic nerve of frog (Xenopus laevis). Mitochondrial population was labeled by injecting two different MitoTracker dyes (Red and Green), spatially apart along sciatic nerves surgically and then allow to "meet"in vivo. At 24h post-surgery, the sciatic nerves were taken out for mitochondrial imaging at the half-way point. During the post-injection periods, the anterograde-directed Green mitochondria meet with the retrograde-directed Red mitochondria. If fusion occurs, the merged of Green and Red fluorophores in the same mitochondrion will produce a Yellow color in merged images. The labeled mitochondria were observed with a Nikon A1 confocal microscope. Our new mitochondrial imaging method opens an avenue to separately assess the role of local axonal mitochondrial fusion, independent of the cell body of nerve fibers.

摘要

线粒体重排(复制、分裂/融合)是一个动态调节的过程,在神经元中有多种功能。有髓轴突是完全分化的神经元细胞体的延伸。线粒体一旦在细胞体中合成,就会进入轴突,表现出强大的运输和积累在Ranvier 结处,以满足代谢需求。线粒体向轴突的这种长距离部署提出了一个问题,即有髓轴突是否可以独立于细胞体发挥作用,进行线粒体重排以匹配局部需求。线粒体融合已被发现在简单的神经元培养物的轴突中发生。然而,在完整的神经系统中,这种事件是否会在体内发生,仍然没有答案。在这里,我们描述了一种新的技术,允许在青蛙(Xenopus laevis)的完整坐骨神经中监测线粒体融合。通过在坐骨神经上注射两种不同的 MitoTracker 染料(红色和绿色)来标记线粒体群体,这两种染料在空间上分开,然后允许它们在体内“相遇”。在手术后 24 小时,取出坐骨神经进行线粒体成像,在中间点进行。在注射后的时期,顺行方向的绿色线粒体与逆行方向的红色线粒体相遇。如果发生融合,绿色和红色荧光团在同一个线粒体中的融合将在合并图像中产生黄色。用尼康 A1 共聚焦显微镜观察标记的线粒体。我们的新线粒体成像方法为评估局部轴突线粒体融合的作用开辟了一条途径,而无需考虑神经纤维的细胞体。

相似文献

8
Local Acceleration of Neurofilament Transport at Nodes of Ranvier.神经丝运输在郎飞氏结处的局部加速。
J Neurosci. 2019 Jan 23;39(4):663-677. doi: 10.1523/JNEUROSCI.2272-18.2018. Epub 2018 Dec 12.

本文引用的文献

3
Mitochondria: joining forces to thwart cell death.线粒体:联合起来对抗细胞死亡。
Biochim Biophys Acta. 2010 Jan;1802(1):162-6. doi: 10.1016/j.bbadis.2009.09.006. Epub 2009 Sep 10.
5
SLP-2 is required for stress-induced mitochondrial hyperfusion.应激诱导的线粒体过度融合需要SLP-2。
EMBO J. 2009 Jun 3;28(11):1589-600. doi: 10.1038/emboj.2009.89. Epub 2009 Apr 9.
8
Mitochondrial dynamics and apoptosis.线粒体动力学与细胞凋亡。
Genes Dev. 2008 Jun 15;22(12):1577-90. doi: 10.1101/gad.1658508.
9
Functions and dysfunctions of mitochondrial dynamics.线粒体动力学的功能与功能障碍。
Nat Rev Mol Cell Biol. 2007 Nov;8(11):870-9. doi: 10.1038/nrm2275.
10
Mitochondrial dynamics and peripheral neuropathy.线粒体动力学与周围神经病变
Neuroscientist. 2008 Feb;14(1):12-8. doi: 10.1177/1073858407307354. Epub 2007 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验