Suppr超能文献

为甲藻中定位于质体的丙酮酸羧化酶的功能提供酶学证据:一种 C4 化合物生成的新途径。

Enzymological evidence for the function of a plastid-located pyruvate carboxylase in the Haptophyte alga Emiliania huxleyi: a novel pathway for the production of C4 compounds.

机构信息

Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572 Japan.

出版信息

Plant Cell Physiol. 2012 Jun;53(6):1043-52. doi: 10.1093/pcp/pcs045. Epub 2012 Apr 3.

Abstract

Pyruvate carboxylase (PYC) catalyzes the β-carboxylation of pyruvate to yield oxaloacetate (OAA). We previously isolated a cDNA encoding a putative PYC (EhPYC1) from the haptophyte alga Emiliania huxleyi and then proposed that EhPYC1 contributes to active anaplerotic β-carboxylation during photosynthesis although PYC activity was not detected in the cell extracts. Involvement of PYC in photosynthetic carbon metabolism is unique, since PYC generally functions in non-photosynthetic organisms. In the present study, we demonstrate that EhPYC1 is highly sensitive to endogenous proteases and therefore is easily degraded in cell extracts. By avoiding proteolytic degradation, PYC activity can be detected in the cell extracts of E. huxleyi. The activity of a recombinant His-tagged EhPYC1 expressed in Streptomyces lividans was inhibited by l-malate in a mixed non-competitive manner. Immunofluorescence labeling showed that EhPYC1 is located in the plastid. This result agrees with the prediction that a bipartite plastid-targeting signal is present that functions to deliver proteins into the four-membrane plastid of haptophyte algae. This is the first finding of a plastid-located PYC. These results indicate that E. huxleyi possesses a unique pathway to produce OAA catalyzed by PYC, and the pathway may provide carbon skeletons for amino acid biosynthesis in the plastid. A database search indicates that PYC genes are widespread in green algae, diatoms and brown algae, suggesting the crucial role of PYC in various aquatic phototrophs.

摘要

丙酮酸羧化酶(PYC)催化丙酮酸的β-羧化反应,生成草酰乙酸(OAA)。我们之前从甲藻 Emiliania huxleyi 中分离出一个编码假定 PYC(EhPYC1)的 cDNA,并提出 EhPYC1 有助于光合作用中的活跃回补β-羧化作用,尽管在细胞提取物中未检测到 PYC 活性。PYC 参与光合作用中的碳代谢是独特的,因为 PYC 通常在非光合作用生物中发挥作用。在本研究中,我们证明 EhPYC1 对内源性蛋白酶高度敏感,因此容易在细胞提取物中降解。通过避免蛋白酶降解,可以在 E. huxleyi 的细胞提取物中检测到 PYC 活性。表达在链霉菌中的重组 His 标记的 EhPYC1 的活性被 l-苹果酸以混合非竞争性方式抑制。免疫荧光标记显示 EhPYC1 位于质体中。这一结果与预测相符,即存在一个双部分质体靶向信号,用于将蛋白质输送到甲藻的四膜质体中。这是首次发现定位于质体的 PYC。这些结果表明,E. huxleyi 具有一种独特的途径,通过 PYC 催化生成 OAA,该途径可能为质体中氨基酸生物合成提供碳骨架。数据库搜索表明 PYC 基因广泛存在于绿藻、硅藻和褐藻中,表明 PYC 在各种水生光养生物中的关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验