Department of Computer Science, National University of Singapore, Singapore.
Bioinformatics. 2012 Jun 1;28(11):1508-16. doi: 10.1093/bioinformatics/bts166. Epub 2012 Apr 5.
Biopathways are often modeled as systems of ordinary differential equations (ODEs). Such systems will usually have many unknown parameters and hence will be difficult to calibrate. Since the data available for calibration will have limited precision, an approximate representation of the ODEs dynamics should suffice. One must, however, be able to efficiently construct such approximations for large models and perform model calibration and subsequent analysis.
We present a graphical processing unit (GPU) based scheme by which a system of ODEs is approximated as a dynamic Bayesian network (DBN). We then construct a model checking procedure for DBNs based on a simple probabilistic linear time temporal logic. The GPU implementation considerably extends the reach of our previous PC-cluster-based implementation (Liu et al., 2011b). Further, the key components of our algorithm can serve as the GPU kernel for other Monte Carlo simulations-based analysis of biopathway dynamics. Similarly, our model checking framework is a generic one and can be applied in other systems biology settings. We have tested our methods on three ODE models of bio-pathways: the epidermal growth factor-nerve growth factor pathway, the segmentation clock network and the MLC-phosphorylation pathway models. The GPU implementation shows significant gains in performance and scalability whereas the model checking framework turns out to be convenient and efficient for specifying and verifying interesting pathways properties.
The source code is freely available at http://www.comp.nus.edu.sg/~rpsysbio/pada-gpu/
生物途径通常被建模为常微分方程 (ODE) 的系统。这样的系统通常会有许多未知参数,因此很难校准。由于用于校准的数据精度有限,因此 ODE 动力学的近似表示应该就足够了。然而,必须能够为大型模型高效地构建此类近似值,并进行模型校准和后续分析。
我们提出了一种基于图形处理单元 (GPU) 的方案,通过该方案,将 ODE 系统近似为动态贝叶斯网络 (DBN)。然后,我们基于简单的概率线性时间时态逻辑为 DBN 构建了模型检查过程。GPU 实现大大扩展了我们之前基于 PC 集群的实现 (Liu 等人,2011b) 的范围。此外,我们算法的关键组件可以作为 GPU 内核,用于其他基于蒙特卡罗模拟的生物途径动力学分析。同样,我们的模型检查框架是通用的,可以应用于其他系统生物学环境。我们已经在三个生物途径的 ODE 模型上测试了我们的方法:表皮生长因子-神经生长因子途径、分段时钟网络和 MLC 磷酸化途径模型。GPU 实现显示出在性能和可扩展性方面的显著提高,而模型检查框架在指定和验证有趣的途径特性方面非常方便和高效。
源代码可在 http://www.comp.nus.edu.sg/~rpsysbio/pada-gpu/ 上免费获得。