Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
J Nucl Med. 2012 May;53(5):813-22. doi: 10.2967/jnumed.111.101436. Epub 2012 Apr 9.
Dopamine transporter (DAT) function is altered by many neurodegenerative diseases. For instance, in Parkinson disease DAT density has been shown to decrease in early disease and to play a role in the occurrence of motor complications. DAT is thus an important imaging target with potential therapeutic relevance in humans and animal models of disease. The PET DAT marker (11)C-methylphenidate is commonly used to quantify DAT function. Here we investigate the characteristics of the (11)C-methylphenidate-derived quantification of DAT in rodents using the 6-hydroxydopamine Parkinson disease rat model.
Seven unilaterally 6-hydroxydopamine-lesioned rats (dopaminergic denervation [DD] range, 36%-94%) were injected with 3.7 MBq/100 g of body weight and tracer masses ranging from 93.8 to 0.0041 μg/100 g of body weight. We evaluated the maximum available transporter density and the in vivo (apparent) ligand-transporter dissociation constant (B(max) and K app d, respectively) with an in vivo Scatchard method using several modeling approaches and estimated the transporter occupancy as a function of the amount of tracer injected and tracer specific activity (SA).
Strong evidence of different nonspecific binding in the striatal region, compared with the reference region, leading to bias in the estimate of DD severity was found. One percent transporter occupancy was reached with 0.14 μg of tracer/100 g of body weight, corresponding to an SA of 5.7 kBq/pmol for the given radioactivity dose, and 10% occupancy was reached at 1.5 μg of tracer/100 g of body weight, corresponding to an SA of 0.57 kBq/pmol. The 6-hydroxydopamine lesion affected B(max) (control, 402 ± 94 pmol/mL; lesioned, 117 ± 120 pmol/mL; P = 0.003) but not K app d (control, 331 ± 63 pmol/mL; lesioned, 362 ± 119 pmol/mL; P = 0.63).
Although DAT imaging can be performed at a relatively high mass of (11)C-methylphenidate (low SA), the additional nonspecific binding found in the striatum can introduce a DD severity-dependent bias in the estimate of tissue-derived binding potential and care must be taken in comparing (11)C-methylphenidate-derived assessment of DD with that obtained using other dopaminergic tracers.
多巴胺转运体(DAT)的功能在许多神经退行性疾病中发生改变。例如,在帕金森病中,DAT 密度已被证明在疾病早期下降,并在运动并发症的发生中起作用。因此,DAT 是一个重要的成像靶点,具有人类和疾病动物模型的潜在治疗相关性。PET DAT 标志物(11)C-甲基苯丙胺常用于量化 DAT 功能。在这里,我们使用 6-羟多巴胺帕金森病大鼠模型研究了啮齿动物中(11)C-甲基苯丙胺衍生的 DAT 定量的特征。
7 只单侧 6-羟多巴胺损伤大鼠(多巴胺能神经支配[DD]范围为 36%-94%)注射 3.7MBq/100g 体重和示踪剂质量范围为 93.8 至 0.0041μg/100g 体重。我们使用几种建模方法评估了最大可用转运体密度和体内(表观)配体-转运体解离常数(B(max)和 K(app)d,分别),并根据示踪剂注射量和示踪剂比活度(SA)估计了转运体占有率。
与参考区域相比,纹状体区域存在明显的非特异性结合,这导致了 DD 严重程度的估计存在偏差。在 100g 体重中注射 0.14μg 的示踪剂,达到 1%的转运体占有率,对应的放射性活度剂量下的 SA 为 5.7kBq/pmol,在 100g 体重中注射 1.5μg 的示踪剂,达到 10%的转运体占有率,对应的 SA 为 0.57kBq/pmol。6-羟多巴胺损伤影响 B(max)(对照,402±94pmol/mL;损伤,117±120pmol/mL;P=0.003),但不影响 K(app)d(对照,331±63pmol/mL;损伤,362±119pmol/mL;P=0.63)。
尽管可以在相对较高的(11)C-甲基苯丙胺质量(低 SA)下进行 DAT 成像,但在纹状体中发现的额外非特异性结合会导致组织衍生结合潜能的估计中存在与 DD 严重程度相关的偏差,在比较(11)C-甲基苯丙胺衍生的 DD 评估与使用其他多巴胺能示踪剂获得的评估时,必须小心谨慎。