Suppr超能文献

定量啮齿动物脑受体成像。

Quantitative Rodent Brain Receptor Imaging.

机构信息

Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tuebingen, Tuebingen, Germany.

Department of Nuclear Medicine and Clinical Molecular Imaging, University of Tuebingen, Tuebingen, Germany.

出版信息

Mol Imaging Biol. 2020 Apr;22(2):223-244. doi: 10.1007/s11307-019-01368-9.

Abstract

Positron emission tomography (PET) is a non-invasive imaging technology employed to describe metabolic, physiological, and biochemical processes in vivo. These include receptor availability, metabolic changes, neurotransmitter release, and alterations of gene expression in the brain. Since the introduction of dedicated small-animal PET systems along with the development of many novel PET imaging probes, the number of PET studies using rats and mice in basic biomedical research tremendously increased over the last decade. This article reviews challenges and advances of quantitative rodent brain imaging to make the readers aware of its physical limitations, as well as to inspire them for its potential applications in preclinical research. In the first section, we briefly discuss the limitations of small-animal PET systems in terms of spatial resolution and sensitivity and point to possible improvements in detector development. In addition, different acquisition and post-processing methods used in rodent PET studies are summarized. We further discuss factors influencing the test-retest variability in small-animal PET studies, e.g., different receptor quantification methodologies which have been mainly translated from human to rodent receptor studies to determine the binding potential and changes of receptor availability and radioligand affinity. We further review different kinetic modeling approaches to obtain quantitative binding data in rodents and PET studies focusing on the quantification of endogenous neurotransmitter release using pharmacological interventions. While several studies have focused on the dopamine system due to the availability of several PET tracers which are sensitive to dopamine release, other neurotransmitter systems have become more and more into focus and are described in this review, as well. We further provide an overview of latest genome engineering technologies, including the CRISPR/Cas9 and DREADD systems that may advance our understanding of brain disorders and function and how imaging has been successfully applied to animal models of human brain disorders. Finally, we review the strengths and opportunities of simultaneous PET/magnetic resonance imaging systems to study drug-receptor interactions and challenges for the translation of PET results from bench to bedside.

摘要

正电子发射断层扫描(PET)是一种非侵入性成像技术,用于描述体内的代谢、生理和生化过程。这些过程包括受体可用性、代谢变化、神经递质释放以及大脑中基因表达的改变。自专用小动物 PET 系统的引入以及许多新型 PET 成像探针的发展以来,过去十年中,使用大鼠和小鼠进行基础生物医学研究的 PET 研究数量大大增加。本文综述了定量啮齿动物脑成像的挑战和进展,以使读者了解其物理局限性,并激发他们在临床前研究中应用的潜力。在第一节中,我们简要讨论了小型动物 PET 系统在空间分辨率和灵敏度方面的局限性,并指出了在探测器开发方面可能的改进。此外,还总结了啮齿动物 PET 研究中使用的不同采集和后处理方法。我们进一步讨论了影响小动物 PET 研究中测试-重测变异性的因素,例如,不同的受体定量方法学主要是从人类到啮齿动物受体研究中转化而来,以确定结合势以及受体可用性和放射性配体亲和力的变化。我们进一步综述了不同的动力学建模方法,以在啮齿动物和 PET 研究中获得定量结合数据,重点是使用药理学干预来定量内源性神经递质释放。虽然由于有几种对多巴胺释放敏感的 PET 示踪剂的可用性,有几项研究集中在多巴胺系统上,但其他神经递质系统也越来越受到关注,并在本综述中进行了描述。我们还概述了最新的基因组工程技术,包括 CRISPR/Cas9 和 DREADD 系统,这些技术可能会促进我们对大脑疾病和功能的理解,以及成像如何成功应用于人类大脑疾病的动物模型。最后,我们综述了 PET/磁共振成像系统同时研究药物-受体相互作用的优势和机会,以及将 PET 结果从实验室转化到临床的挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验