Suppr超能文献

细胞外纤维素酶 Cel7A 水解不溶性纤维素的预稳态动力学。

Pre-steady-state kinetics for hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A.

机构信息

Department of Science, Systems, and Models, Roskilde University, Roskilde, Denmark.

出版信息

J Biol Chem. 2012 May 25;287(22):18451-8. doi: 10.1074/jbc.M111.334946. Epub 2012 Apr 9.

Abstract

The transient kinetic behavior of enzyme reactions prior to the establishment of steady state is a major source of mechanistic information, yet this approach has not been utilized for cellulases acting on their natural substrate, insoluble cellulose. Here, we elucidate the pre-steady-state regime for the exo-acting cellulase Cel7A using amperometric biosensors and an explicit model for processive hydrolysis of cellulose. This analysis allows the identification of a pseudo-steady-state period and quantification of a processivity number as well as rate constants for the formation of a threaded enzyme complex, processive hydrolysis, and dissociation, respectively. These kinetic parameters elucidate limiting factors in the cellulolytic process. We concluded, for example, that Cel7A cleaves about four glycosidic bonds/s during processive hydrolysis. However, the results suggest that stalling the processive movement and low off-rates result in a specific activity at pseudo-steady state that is 10-25-fold lower. It follows that the dissociation of the enzyme-substrate complex (half-time of ~30 s) is rate-limiting for the investigated system. We suggest that this approach can be useful in attempts to unveil fundamental reasons for the distinctive variability in hydrolytic activity found in different cellulase-substrate systems.

摘要

在达到稳态之前,酶反应的瞬态动力学行为是获取机制信息的主要来源,但这种方法尚未应用于作用于天然底物不溶性纤维素的纤维素酶。在这里,我们使用电流型生物传感器和纤维素连续水解的显式模型阐明了外切型纤维素酶 Cel7A 的预稳态机制。该分析可以识别准稳态阶段,并分别量化进程数以及形成螺纹酶复合物、连续水解和解离的速率常数。这些动力学参数阐明了纤维素酶解过程中的限制因素。例如,我们得出结论,Cel7A 在连续水解过程中大约每秒钟切割四个糖苷键。然而,结果表明,连续运动的停顿和低的脱离速率导致准稳态下的比活度降低了 10-25 倍。因此,酶-底物复合物的解离(半衰期约为 30 秒)是所研究体系的限速步骤。我们认为,这种方法可能有助于揭示不同纤维素酶-底物体系中水解活性差异的基本原因。

相似文献

1
Pre-steady-state kinetics for hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A.
J Biol Chem. 2012 May 25;287(22):18451-8. doi: 10.1074/jbc.M111.334946. Epub 2012 Apr 9.
2
Rate-limiting step and substrate accessibility of cellobiohydrolase Cel6A from Trichoderma reesei.
FEBS J. 2018 Dec;285(23):4482-4493. doi: 10.1111/febs.14668. Epub 2018 Oct 17.
3
A steady-state theory for processive cellulases.
FEBS J. 2013 Aug;280(16):3952-61. doi: 10.1111/febs.12397. Epub 2013 Jul 12.
4
A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases.
Enzyme Microb Technol. 2014 May 10;58-59:68-74. doi: 10.1016/j.enzmictec.2014.03.002. Epub 2014 Mar 12.
5
A quenched-flow system for measuring heterogeneous enzyme kinetics with sub-second time resolution.
Enzyme Microb Technol. 2017 Oct;105:45-50. doi: 10.1016/j.enzmictec.2017.06.009. Epub 2017 Jun 13.
6
Surface kinetics for cooperative fungal cellulase digestion of cellulose from quartz crystal microgravimetry.
J Colloid Interface Sci. 2013 Mar 15;394:498-508. doi: 10.1016/j.jcis.2012.12.022. Epub 2012 Dec 19.
7
Direct kinetic comparison of the two cellobiohydrolases Cel6A and Cel7A from Hypocrea jecorina.
Biochim Biophys Acta Proteins Proteom. 2017 Dec;1865(12):1739-1745. doi: 10.1016/j.bbapap.2017.08.013. Epub 2017 Aug 24.
9
Kinetic analysis of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase using an amperometric biosensor.
Anal Biochem. 2006 Oct 15;357(2):257-61. doi: 10.1016/j.ab.2006.07.019. Epub 2006 Aug 2.

引用本文的文献

1
The Effect of Accessibility of Insoluble Substrate on the Overall Kinetics of Enzymatic Degradation.
Biotechnol Bioeng. 2025 Apr;122(4):895-907. doi: 10.1002/bit.28921. Epub 2025 Jan 6.
2
Are cellulases slow? Kinetic and thermodynamic limitations for enzymatic breakdown of cellulose.
BBA Adv. 2024 Dec 6;7:100128. doi: 10.1016/j.bbadva.2024.100128. eCollection 2025.
3
Engineering of glycoside hydrolase family 7 cellobiohydrolases directed by natural diversity screening.
J Biol Chem. 2024 Mar;300(3):105749. doi: 10.1016/j.jbc.2024.105749. Epub 2024 Feb 13.
4
Impact of Synergy Partner Cel7B on Cel7A Binding Rates: Insights from Single-Molecule Data.
J Phys Chem B. 2024 Jan 25;128(3):635-647. doi: 10.1021/acs.jpcb.3c05697. Epub 2024 Jan 16.
5
Model of Processive Catalysis with Site Clustering and Blocking and Its Application to Cellulose Hydrolysis.
J Phys Chem B. 2022 Oct 27;126(42):8472-8485. doi: 10.1021/acs.jpcb.2c05956. Epub 2022 Oct 17.
6
Enzyme Synergy in Transient Clusters of Endo- and Exocellulase Enables a Multilayer Mode of Processive Depolymerization of Cellulose.
ACS Catal. 2022 Sep 2;12(17):10984-10994. doi: 10.1021/acscatal.2c02377. Epub 2022 Aug 24.
7
Computing Cellulase Kinetics with a Two-Domain Linear Interaction Energy Approach.
ACS Omega. 2021 Jan 6;6(2):1547-1555. doi: 10.1021/acsomega.0c05361. eCollection 2021 Jan 19.
8
Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives.
J Ind Microbiol Biotechnol. 2020 Oct;47(9-10):623-657. doi: 10.1007/s10295-020-02301-8. Epub 2020 Aug 25.
9
Interfacial molecular interactions of cellobiohydrolase Cel7A and its variants on cellulose.
Biotechnol Biofuels. 2020 Jan 18;13:10. doi: 10.1186/s13068-020-1649-7. eCollection 2020.
10
Substrate binding in the processive cellulase Cel7A: Transition state of complexation and roles of conserved tryptophan residues.
J Biol Chem. 2020 Feb 7;295(6):1454-1463. doi: 10.1074/jbc.RA119.011420. Epub 2019 Dec 17.

本文引用的文献

1
Origin of initial burst in activity for Trichoderma reesei endo-glucanases hydrolyzing insoluble cellulose.
J Biol Chem. 2012 Jan 6;287(2):1252-60. doi: 10.1074/jbc.M111.276485. Epub 2011 Nov 22.
2
Initial- and processive-cut products reveal cellobiohydrolase rate limitations and the role of companion enzymes.
Biochemistry. 2012 Jan 10;51(1):442-52. doi: 10.1021/bi2011543. Epub 2011 Dec 14.
3
Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface.
Science. 2011 Sep 2;333(6047):1279-82. doi: 10.1126/science.1208386.
4
Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components.
Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15079-84. doi: 10.1073/pnas.1105776108. Epub 2011 Aug 29.
6
Molecular-level origins of biomass recalcitrance: decrystallization free energies for four common cellulose polymorphs.
J Phys Chem B. 2011 Apr 14;115(14):4118-27. doi: 10.1021/jp1106394. Epub 2011 Mar 22.
7
A kinetic model for the burst phase of processive cellulases.
FEBS J. 2011 May;278(9):1547-60. doi: 10.1111/j.1742-4658.2011.08078.x. Epub 2011 Mar 28.
8
Processivity of cellobiohydrolases is limited by the substrate.
J Biol Chem. 2011 Jan 7;286(1):169-77. doi: 10.1074/jbc.M110.161059. Epub 2010 Nov 4.
9
A comparative study of activity and apparent inhibition of fungal β-glucosidases.
Biotechnol Bioeng. 2010 Dec 15;107(6):943-52. doi: 10.1002/bit.22885.
10
Cellobiose dehydrogenase: a versatile catalyst for electrochemical applications.
Chemphyschem. 2010 Sep 10;11(13):2674-97. doi: 10.1002/cphc.201000216.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验