Suppr超能文献

数据录入质量的单录入、双录入和自动化表单处理——基于患者报告结局研究的示例。

Quality of data entry using single entry, double entry and automated forms processing--an example based on a study of patient-reported outcomes.

机构信息

Department of Orthopaedic Surgery and Traumatology, Odense University Hospital, Odense, Funen, Denmark.

出版信息

PLoS One. 2012;7(4):e35087. doi: 10.1371/journal.pone.0035087. Epub 2012 Apr 6.

Abstract

BACKGROUND

The clinical and scientific usage of patient-reported outcome measures is increasing in the health services. Often paper forms are used. Manual double entry of data is defined as the definitive gold standard for transferring data to an electronic format, but the process is laborious. Automated forms processing may be an alternative, but further validation is warranted.

METHODS

200 patients were randomly selected from a cohort of 5777 patients who had previously answered two different questionnaires. The questionnaires were scanned using an automated forms processing technique, as well as processed by single and double manual data entry, using the EpiData Entry data entry program. The main outcome measure was the proportion of correctly entered numbers at question, form and study level.

RESULTS

Manual double-key data entry (error proportion per 1000 fields = 0.046 (95% CI: 0.001-0.258)) performed better than single-key data entry (error proportion per 1000 fields = 0.370 (95% CI: 0.160-0.729), (p = 0.020)). There was no statistical difference between Optical Mark Recognition (error proportion per 1000 fields = 0.046 (95% CI: 0.001-0.258)) and double-key data entry (p = 1.000). With the Intelligent Character Recognition method, there was no statistical difference compared to single-key data entry (error proportion per 1000 fields = 6.734 (95% CI: 0.817-24.113), (p = 0.656)), as well as double-key data entry (error proportion per 1000 fields = 3.367 (95% CI: 0.085-18.616)), (p = 0.319)).

CONCLUSIONS

Automated forms processing is a valid alternative to double manual data entry for highly structured forms containing only check boxes, numerical codes and no dates. Automated forms processing can be superior to single manual data entry through a data entry program, depending on the method chosen.

摘要

背景

在卫生服务领域,患者报告的结果测量的临床和科学使用正在增加。通常使用纸质表格。手动双重数据录入被定义为将数据转移到电子格式的明确黄金标准,但该过程很繁琐。自动化表格处理可能是一种替代方法,但需要进一步验证。

方法

从之前回答过两个不同问卷的 5777 名患者的队列中随机选择 200 名患者。使用自动化表格处理技术扫描问卷,以及使用 EpiData Entry 数据录入程序进行单键和双键手动数据录入。主要观察指标是问题、表格和研究水平上正确输入数字的比例。

结果

手动双键数据录入(每 1000 个字段的错误比例为 0.046(95%CI:0.001-0.258))优于单键数据录入(每 1000 个字段的错误比例为 0.370(95%CI:0.160-0.729),(p=0.020))。光学标记识别(每 1000 个字段的错误比例为 0.046(95%CI:0.001-0.258))与双键数据录入之间无统计学差异(p=1.000)。与单键数据录入相比,智能字符识别方法无统计学差异(每 1000 个字段的错误比例为 6.734(95%CI:0.817-24.113),(p=0.656))以及双键数据录入(每 1000 个字段的错误比例为 3.367(95%CI:0.085-18.616),(p=0.319))。

结论

对于仅包含复选框、数字代码且没有日期的高度结构化表格,自动化表格处理是手动双重数据录入的有效替代方法。自动化表格处理可以通过数据录入程序优于单键手动数据录入,具体取决于所选择的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a49b/3320865/38a354b48aa5/pone.0035087.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验