Suppr超能文献

在钙释放单元的三维重建中模拟心脏钙火花。

Modelling cardiac calcium sparks in a three-dimensional reconstruction of a calcium release unit.

机构信息

Department of Bioengineering, University of California San Diego, CA, USA.

出版信息

J Physiol. 2012 Sep 15;590(18):4403-22. doi: 10.1113/jphysiol.2012.227926. Epub 2012 Apr 10.

Abstract

Triggered release of Ca2+ from an individual sarcoplasmic reticulum (SR) Ca(2+) release unit (CRU) is the fundamental event of cardiac excitation–contraction coupling, and spontaneous release events (sparks) are the major contributor to diastolic Ca(2+) leak in cardiomyocytes. Previous model studies have predicted that the duration and magnitude of the spark is determined by the local CRU geometry, as well as the localization and density of Ca(2+) handling proteins. We have created a detailed computational model of a CRU, and developed novel tools to generate the computational geometry from electron tomographic images. Ca(2+) diffusion was modelled within the SR and the cytosol to examine the effects of localization and density of the Na(+)/Ca(2+) exchanger, sarco/endoplasmic reticulum Ca(2+)-ATPase 2 (SERCA), and calsequestrin on spark dynamics. We reconcile previous model predictions of approximately 90% local Ca(2+) depletion in junctional SR, with experimental reports of about 40%. This analysis supports the hypothesis that dye kinetics and optical averaging effects can have a significant impact on measures of spark dynamics. Our model also predicts that distributing calsequestrin within non-junctional Z-disc SR compartments, in addition to the junctional compartment, prolongs spark release time as reported by Fluo5. By pumping Ca(2+) back into the SR during a release, SERCA is able to prolong a Ca(2+) spark, and this may contribute to SERCA-dependent changes in Ca(2+) wave speed. Finally, we show that including the Na(+)/Ca(2+) exchanger inside the dyadic cleft does not alter local [Ca(2+)] during a spark.

摘要

单个肌浆网(SR)Ca2+释放单元(CRU)引发的 Ca2+释放是心脏兴奋-收缩偶联的基本事件,而自发性释放事件(火花)是心肌细胞舒张期 Ca2+渗漏的主要原因。先前的模型研究预测,火花的持续时间和幅度取决于局部 CRU 几何形状,以及 Ca2+处理蛋白的定位和密度。我们创建了一个详细的 CRU 计算模型,并开发了新的工具来从电子断层图像生成计算几何形状。在 SR 和细胞质内模拟 Ca2+扩散,以研究 Na+/Ca2+交换体、肌浆/内质网 Ca2+-ATP 酶 2(SERCA)和肌质网钙结合蛋白(calsequestrin)的定位和密度对火花动力学的影响。我们调和了先前模型对连接 SR 中约 90%局部 Ca2+耗竭的预测,与实验报告的约 40%相吻合。这项分析支持了这样一种假设,即染料动力学和光学平均效应可能对火花动力学的测量产生重大影响。我们的模型还预测,除了连接区室之外,将 calsequestrin 分布在非连接的 Z 盘 SR 区室内,可延长 Fluo5 报告的火花释放时间。通过在释放过程中将 Ca2+泵回 SR,SERCA 能够延长 Ca2+火花的释放时间,这可能有助于 SERCA 依赖性 Ca2+波速度的变化。最后,我们表明,在二联体裂隙内包含 Na+/Ca2+交换体不会改变火花期间的局部 [Ca2+]。

相似文献

1
Modelling cardiac calcium sparks in a three-dimensional reconstruction of a calcium release unit.
J Physiol. 2012 Sep 15;590(18):4403-22. doi: 10.1113/jphysiol.2012.227926. Epub 2012 Apr 10.
2
Increasing SERCA function promotes initiation of calcium sparks and breakup of calcium waves.
J Physiol. 2021 Jul;599(13):3267-3278. doi: 10.1113/JP281579. Epub 2021 Jun 5.
3
Ca²+ spark-dependent and -independent sarcoplasmic reticulum Ca²+ leak in normal and failing rabbit ventricular myocytes.
J Physiol. 2010 Dec 1;588(Pt 23):4743-57. doi: 10.1113/jphysiol.2010.197913. Epub 2010 Oct 20.
4
T-tubule disruption promotes calcium alternans in failing ventricular myocytes: mechanistic insights from computational modeling.
J Mol Cell Cardiol. 2015 Feb;79:32-41. doi: 10.1016/j.yjmcc.2014.10.018. Epub 2014 Nov 6.
7
Sarcoplasmic Reticulum Structure and Functional Properties that Promote Long-Lasting Calcium Sparks.
Biophys J. 2016 Jan 19;110(2):382-390. doi: 10.1016/j.bpj.2015.12.009.
9
Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes.
J Physiol. 2012 Dec 1;590(23):6037-45. doi: 10.1113/jphysiol.2012.239434. Epub 2012 Sep 17.
10
Regional differences in spontaneous Ca2+ spark activity and regulation in cat atrial myocytes.
J Physiol. 2006 May 1;572(Pt 3):799-809. doi: 10.1113/jphysiol.2005.103267.

引用本文的文献

1
Electrodiffusion dynamics in the cardiomyocyte dyad at nano-scale resolution using the Poisson-Nernst-Planck (PNP) equations.
PLoS Comput Biol. 2025 Jun 12;21(6):e1013149. doi: 10.1371/journal.pcbi.1013149. eCollection 2025 Jun.
2
Spatial modeling algorithms for reactions and transport in biological cells.
Nat Comput Sci. 2025 Jan;5(1):76-89. doi: 10.1038/s43588-024-00745-x. Epub 2024 Dec 19.
5
Modeling Calcium Cycling in the Heart: Progress, Pitfalls, and Challenges.
Biomolecules. 2022 Nov 14;12(11):1686. doi: 10.3390/biom12111686.
7
Nanoscale organization of ryanodine receptor distribution and phosphorylation pattern determines the dynamics of calcium sparks.
PLoS Comput Biol. 2022 Jun 6;18(6):e1010126. doi: 10.1371/journal.pcbi.1010126. eCollection 2022 Jun.
8
Multi-Scale Computational Modeling of Spatial Calcium Handling From Nanodomain to Whole-Heart: Overview and Perspectives.
Front Physiol. 2022 Mar 9;13:836622. doi: 10.3389/fphys.2022.836622. eCollection 2022.
9
Image-Driven Modeling of Nanoscopic Cardiac Function: Where Have We Come From, and Where Are We Going?
Front Physiol. 2022 Mar 8;13:834211. doi: 10.3389/fphys.2022.834211. eCollection 2022.

本文引用的文献

1
Computational methods and challenges for large-scale circuit mapping.
Curr Opin Neurobiol. 2012 Feb;22(1):162-9. doi: 10.1016/j.conb.2011.11.010. Epub 2012 Jan 3.
2
The structure and functioning of the couplon in the mammalian cardiomyocyte.
Protoplasma. 2012 Feb;249 Suppl 1:S31-8. doi: 10.1007/s00709-011-0347-5. Epub 2011 Nov 5.
3
Dynamics of calcium sparks and calcium leak in the heart.
Biophys J. 2011 Sep 21;101(6):1287-96. doi: 10.1016/j.bpj.2011.07.021. Epub 2011 Sep 20.
4
Phospholamban binds with differential affinity to calcium pump conformers.
J Biol Chem. 2011 Oct 7;286(40):35044-50. doi: 10.1074/jbc.M111.266759. Epub 2011 Aug 9.
5
Dynamic local changes in sarcoplasmic reticulum calcium: physiological and pathophysiological roles.
J Mol Cell Cardiol. 2012 Feb;52(2):304-11. doi: 10.1016/j.yjmcc.2011.06.024. Epub 2011 Jul 13.
6
Recovery of cardiac calcium release is controlled by sarcoplasmic reticulum refilling and ryanodine receptor sensitivity.
Cardiovasc Res. 2011 Sep 1;91(4):598-605. doi: 10.1093/cvr/cvr143. Epub 2011 May 24.
7
Dynamic calcium movement inside cardiac sarcoplasmic reticulum during release.
Circ Res. 2011 Apr 1;108(7):847-56. doi: 10.1161/CIRCRESAHA.111.240234. Epub 2011 Feb 10.
8
Methods for segmentation and interpretation of electron tomographic reconstructions.
Methods Enzymol. 2010;483:31-46. doi: 10.1016/S0076-6879(10)83002-2.
9
Control of Ca2+ release by action potential configuration in normal and failing murine cardiomyocytes.
Biophys J. 2010 Sep 8;99(5):1377-86. doi: 10.1016/j.bpj.2010.06.055.
10
Activation of reverse Na+-Ca2+ exchange by the Na+ current augments the cardiac Ca2+ transient: evidence from NCX knockout mice.
J Physiol. 2010 Sep 1;588(Pt 17):3267-76. doi: 10.1113/jphysiol.2010.187708. Epub 2010 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验