Suppr超能文献

大规模电路映射的计算方法和挑战。

Computational methods and challenges for large-scale circuit mapping.

机构信息

Structure of Neocortical Circuits Group, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.

出版信息

Curr Opin Neurobiol. 2012 Feb;22(1):162-9. doi: 10.1016/j.conb.2011.11.010. Epub 2012 Jan 3.

Abstract

The connectivity architecture of neuronal circuits is essential to understand how brains work, yet our knowledge about the neuronal wiring diagrams remains limited and partial. Technical breakthroughs in labeling and imaging methods starting more than a century ago have advanced knowledge in the field. However, the volume of data associated with imaging a whole brain or a significant fraction thereof, with electron or light microscopy, has only recently become amenable to digital storage and analysis. A mouse brain imaged at light-microscopic resolution is about a terabyte of data, and 1mm(3) of the brain at EM resolution is about half a petabyte. This has given rise to a new field of research, computational analysis of large-scale neuroanatomical data sets, with goals that include reconstructions of the morphology of individual neurons as well as entire circuits. The problems encountered include large data management, segmentation and 3D reconstruction, computational geometry and workflow management allowing for hybrid approaches combining manual and algorithmic processing. Here we review this growing field of neuronal data analysis with emphasis on reconstructing neurons from EM data cubes.

摘要

神经元回路的连通性结构对于理解大脑如何工作至关重要,但我们对神经元布线图的了解仍然有限且不完整。一个多世纪前,在标记和成像方法上的技术突破推动了该领域的知识发展。然而,与电子显微镜或光学显微镜相关联的成像整个大脑或其重要部分的数据集的体积,直到最近才能够进行数字存储和分析。以光学显微镜分辨率成像的老鼠大脑的数据量约为 1TB,而 EM 分辨率的 1mm(3)大脑的数据量约为半拍字节。这催生了一个新的研究领域,即大规模神经解剖数据集的计算分析,其目标包括单个神经元以及整个回路的形态重建。所遇到的问题包括大数据管理、分割和 3D 重建、计算几何和工作流程管理,这些管理允许结合手动和算法处理的混合方法。本文重点介绍了从 EM 数据立方体中重建神经元的方法,以此来综述这个不断发展的神经元数据分析领域。

相似文献

1
Computational methods and challenges for large-scale circuit mapping.
Curr Opin Neurobiol. 2012 Feb;22(1):162-9. doi: 10.1016/j.conb.2011.11.010. Epub 2012 Jan 3.
2
Volume electron microscopy for neuronal circuit reconstruction.
Curr Opin Neurobiol. 2012 Feb;22(1):154-61. doi: 10.1016/j.conb.2011.10.022. Epub 2011 Nov 24.
3
Challenges of microtome-based serial block-face scanning electron microscopy in neuroscience.
J Microsc. 2015 Aug;259(2):137-142. doi: 10.1111/jmi.12244. Epub 2015 Apr 23.
4
Large-scale automatic reconstruction of neuronal processes from electron microscopy images.
Med Image Anal. 2015 May;22(1):77-88. doi: 10.1016/j.media.2015.02.001. Epub 2015 Mar 2.
5
Towards neural circuit reconstruction with volume electron microscopy techniques.
Curr Opin Neurobiol. 2006 Oct;16(5):562-70. doi: 10.1016/j.conb.2006.08.010. Epub 2006 Sep 8.
6
Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution.
Neuroimage. 2013 Jul 1;74:87-98. doi: 10.1016/j.neuroimage.2013.02.005. Epub 2013 Feb 14.
7
Convolutional nets for reconstructing neural circuits from brain images acquired by serial section electron microscopy.
Curr Opin Neurobiol. 2019 Apr;55:188-198. doi: 10.1016/j.conb.2019.04.001. Epub 2019 May 6.
8
3D BrainCV: simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution.
Neuroimage. 2014 Feb 15;87:199-208. doi: 10.1016/j.neuroimage.2013.10.036. Epub 2013 Oct 31.
9
Geometrical consistent 3D tracing of neuronal processes in ssTEM data.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):209-16. doi: 10.1007/978-3-642-15745-5_26.
10
Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits.
Front Neural Circuits. 2014 Jun 27;8:68. doi: 10.3389/fncir.2014.00068. eCollection 2014.

引用本文的文献

1
A neuronal imaging dataset for deep learning in the reconstruction of single-neuron axons.
Front Neuroinform. 2025 Aug 5;19:1628030. doi: 10.3389/fninf.2025.1628030. eCollection 2025.
2
3
Unsupervised classification of brain-wide axons reveals neuronal projection blueprint.
Res Sq. 2023 Jul 3:rs.3.rs-3044664. doi: 10.21203/rs.3.rs-3044664/v1.
4
Pursuit of precision medicine: Systems biology approaches in Alzheimer's disease mouse models.
Neurobiol Dis. 2021 Dec;161:105558. doi: 10.1016/j.nbd.2021.105558. Epub 2021 Nov 10.
5
Foreground Estimation in Neuronal Images With a Sparse-Smooth Model for Robust Quantification.
Front Neuroanat. 2021 Oct 26;15:716718. doi: 10.3389/fnana.2021.716718. eCollection 2021.
6
Semantic segmentation of microscopic neuroanatomical data by combining topological priors with encoder-decoder deep networks.
Nat Mach Intell. 2020 Oct;2(10):585-594. doi: 10.1038/s42256-020-0227-9. Epub 2020 Sep 28.
7
Methods for analyzing neuronal structure and activity in Caenorhabditis elegans.
Genetics. 2021 Aug 9;218(4). doi: 10.1093/genetics/iyab072.
8
webTDat: A Web-Based, Real-Time, 3D Visualization Framework for Mesoscopic Whole-Brain Images.
Front Neuroinform. 2021 Jan 13;14:542169. doi: 10.3389/fninf.2020.542169. eCollection 2020.
9
Advanced CUBIC tissue clearing for whole-organ cell profiling.
Nat Protoc. 2019 Dec;14(12):3506-3537. doi: 10.1038/s41596-019-0240-9. Epub 2019 Nov 20.
10
A Brief History of Simulation Neuroscience.
Front Neuroinform. 2019 May 7;13:32. doi: 10.3389/fninf.2019.00032. eCollection 2019.

本文引用的文献

1
The structure of the nervous system of the nematode Caenorhabditis elegans.
Philos Trans R Soc Lond B Biol Sci. 1986 Nov 12;314(1165):1-340. doi: 10.1098/rstb.1986.0056.
2
Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain.
Curr Biol. 2011 Dec 6;21(23):2000-5. doi: 10.1016/j.cub.2011.10.022. Epub 2011 Nov 23.
3
Automated detection and segmentation of synaptic contacts in nearly isotropic serial electron microscopy images.
PLoS One. 2011;6(10):e24899. doi: 10.1371/journal.pone.0024899. Epub 2011 Oct 21.
4
Carving: scalable interactive segmentation of neural volume electron microscopy images.
Med Image Comput Comput Assist Interv. 2011;14(Pt 1):653-60. doi: 10.1007/978-3-642-23623-5_82.
5
Inhibitory interneurons in a cortical column form hot zones of inhibition in layers 2 and 5A.
Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16807-12. doi: 10.1073/pnas.1113648108. Epub 2011 Sep 26.
7
The Drosophila larval visual system: high-resolution analysis of a simple visual neuropil.
Dev Biol. 2011 Oct 1;358(1):33-43. doi: 10.1016/j.ydbio.2011.07.006. Epub 2011 Jul 12.
8
High-accuracy neurite reconstruction for high-throughput neuroanatomy.
Nat Neurosci. 2011 Jul 10;14(8):1081-8. doi: 10.1038/nn.2868.
9
BrainAligner: 3D registration atlases of Drosophila brains.
Nat Methods. 2011 Jun;8(6):493-500. doi: 10.1038/nmeth.1602. Epub 2011 May 1.
10
The DIADEM metric: comparing multiple reconstructions of the same neuron.
Neuroinformatics. 2011 Sep;9(2-3):233-45. doi: 10.1007/s12021-011-9117-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验