Suppr超能文献

利用与资源相关的尖峰时间依赖性可塑性学习复杂的时间模式。

Learning complex temporal patterns with resource-dependent spike timing-dependent plasticity.

机构信息

Qualcomm Research, San Diego, CA 92121, USA.

出版信息

J Neurophysiol. 2012 Jul;108(2):551-66. doi: 10.1152/jn.01150.2011. Epub 2012 Apr 11.

Abstract

Studies of spike timing-dependent plasticity (STDP) have revealed that long-term changes in the strength of a synapse may be modulated substantially by temporal relationships between multiple presynaptic and postsynaptic spikes. Whereas long-term potentiation (LTP) and long-term depression (LTD) of synaptic strength have been modeled as distinct or separate functional mechanisms, here, we propose a new shared resource model. A functional consequence of our model is fast, stable, and diverse unsupervised learning of temporal multispike patterns with a biologically consistent spiking neural network. Due to interdependencies between LTP and LTD, dendritic delays, and proactive homeostatic aspects of the model, neurons are equipped to learn to decode temporally coded information within spike bursts. Moreover, neurons learn spike timing with few exposures in substantial noise and jitter. Surprisingly, despite having only one parameter, the model also accurately predicts in vitro observations of STDP in more complex multispike trains, as well as rate-dependent effects. We discuss candidate commonalities in natural long-term plasticity mechanisms.

摘要

研究尖峰时间依赖可塑性 (STDP) 表明,突触强度的长期变化可能会受到多个前突触和后突触尖峰之间的时间关系的极大调节。虽然突触强度的长时程增强 (LTP) 和长时程抑制 (LTD) 已被建模为不同或独立的功能机制,但在这里,我们提出了一个新的共享资源模型。我们模型的一个功能后果是,使用具有生物学一致性的放电神经网络快速、稳定和多样化地对多尖峰模式进行无监督学习。由于 LTP 和 LTD、树突延迟以及模型的主动稳态方面之间的相互依赖关系,神经元能够学会解码尖峰爆发中的时间编码信息。此外,神经元在大量噪声和抖动中只需几次暴露就能学习到尖峰时间。令人惊讶的是,尽管该模型只有一个参数,但它还可以准确预测更复杂的多尖峰训练中体外观察到的 STDP 以及与率相关的效应。我们讨论了自然长时程可塑性机制中的候选共性。

相似文献

1
Learning complex temporal patterns with resource-dependent spike timing-dependent plasticity.
J Neurophysiol. 2012 Jul;108(2):551-66. doi: 10.1152/jn.01150.2011. Epub 2012 Apr 11.
2
Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
J Neurosci. 2017 Mar 15;37(11):2809-2823. doi: 10.1523/JNEUROSCI.2079-16.2016. Epub 2017 Feb 10.
3
Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
Neural Comput. 2007 Jun;19(6):1468-502. doi: 10.1162/neco.2007.19.6.1468.
4
The spike-timing dependence of plasticity.
Neuron. 2012 Aug 23;75(4):556-71. doi: 10.1016/j.neuron.2012.08.001.
5
Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.
J Neurosci. 2006 Oct 11;26(41):10420-9. doi: 10.1523/JNEUROSCI.2650-06.2006.
7
Impact of deviation from precise balance of spike-timing-dependent plasticity.
Neural Netw. 2004 Sep;17(7):917-24. doi: 10.1016/j.neunet.2004.03.003.
8
Shaping synaptic learning by the duration of postsynaptic action potential in a new STDP model.
PLoS One. 2014 Feb 14;9(2):e88592. doi: 10.1371/journal.pone.0088592. eCollection 2014.
9
Spike timing-dependent plasticity: from synapse to perception.
Physiol Rev. 2006 Jul;86(3):1033-48. doi: 10.1152/physrev.00030.2005.
10
Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity.
PLoS Comput Biol. 2016 Mar 3;12(3):e1004750. doi: 10.1371/journal.pcbi.1004750. eCollection 2016 Mar.

引用本文的文献

1
Spiking time-dependent plasticity leads to efficient coding of predictions.
Biol Cybern. 2020 Feb;114(1):43-61. doi: 10.1007/s00422-019-00813-w. Epub 2019 Dec 24.
2
Optimal Localist and Distributed Coding of Spatiotemporal Spike Patterns Through STDP and Coincidence Detection.
Front Comput Neurosci. 2018 Sep 18;12:74. doi: 10.3389/fncom.2018.00074. eCollection 2018.
3
Breaking Liebig's Law: An Advanced Multipurpose Neuromorphic Engine.
Front Neurosci. 2018 Aug 29;12:593. doi: 10.3389/fnins.2018.00593. eCollection 2018.
4
STDP Allows Close-to-Optimal Spatiotemporal Spike Pattern Detection by Single Coincidence Detector Neurons.
Neuroscience. 2018 Oct 1;389:133-140. doi: 10.1016/j.neuroscience.2017.06.032. Epub 2017 Jun 29.
5
Energetic Constraints Produce Self-sustained Oscillatory Dynamics in Neuronal Networks.
Front Neurosci. 2017 Feb 27;11:80. doi: 10.3389/fnins.2017.00080. eCollection 2017.
6
Modeling the formation process of grouping stimuli sets through cortical columns and microcircuits to feature neurons.
Comput Intell Neurosci. 2013;2013:290358. doi: 10.1155/2013/290358. Epub 2013 Nov 28.

本文引用的文献

1
Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3991-6. doi: 10.1073/pnas.1109359109. Epub 2012 Feb 22.
2
A triplet spike-timing-dependent plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations.
Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19383-8. doi: 10.1073/pnas.1105933108. Epub 2011 Nov 11.
3
A history of spike-timing-dependent plasticity.
Front Synaptic Neurosci. 2011 Aug 29;3:4. doi: 10.3389/fnsyn.2011.00004. eCollection 2011.
4
Questions about STDP as a General Model of Synaptic Plasticity.
Front Synaptic Neurosci. 2010 Oct 4;2:140. doi: 10.3389/fnsyn.2010.00140. eCollection 2010.
5
Voltage and Spike Timing Interact in STDP - A Unified Model.
Front Synaptic Neurosci. 2010 Jul 21;2:25. doi: 10.3389/fnsyn.2010.00025. eCollection 2010.
6
Temporal modulation of spike-timing-dependent plasticity.
Front Synaptic Neurosci. 2010 Jun 17;2:19. doi: 10.3389/fnsyn.2010.00019. eCollection 2010.
7
Presynaptic NMDA Receptors and Spike Timing-Dependent Depression at Cortical Synapses.
Front Synaptic Neurosci. 2010 Jun 17;2:18. doi: 10.3389/fnsyn.2010.00018. eCollection 2010.
8
Homeostatic Plasticity and STDP: Keeping a Neuron's Cool in a Fluctuating World.
Front Synaptic Neurosci. 2010 Jun 7;2:5. doi: 10.3389/fnsyn.2010.00005. eCollection 2010.
9
Intrinsic stability of temporally shifted spike-timing dependent plasticity.
PLoS Comput Biol. 2010 Nov 4;6(11):e1000961. doi: 10.1371/journal.pcbi.1000961.
10
Dendritic discrimination of temporal input sequences in cortical neurons.
Science. 2010 Sep 24;329(5999):1671-5. doi: 10.1126/science.1189664. Epub 2010 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验