CERCO UMR5549 CNRS - Université Toulouse 3, France.
Neuroscience. 2018 Oct 1;389:133-140. doi: 10.1016/j.neuroscience.2017.06.032. Epub 2017 Jun 29.
Repeating spatiotemporal spike patterns exist and carry information. How this information is extracted by downstream neurons is unclear. Here we theoretically investigate to what extent a single cell could detect a given spike pattern and what the optimal parameters to do so are, in particular the membrane time constant τ. Using a leaky integrate-and-fire (LIF) neuron with homogeneous Poisson input, we computed this optimum analytically. We found that a relatively small τ (at most a few tens of ms) is usually optimal, even when the pattern is much longer. This is somewhat counter-intuitive as the resulting detector ignores most of the pattern, due to its fast memory decay. Next, we wondered if spike-timing-dependent plasticity (STDP) could enable a neuron to reach the theoretical optimum. We simulated a LIF equipped with additive STDP, and repeatedly exposed it to a given input spike pattern. As in previous studies, the LIF progressively became selective to the repeating pattern with no supervision, even when the pattern was embedded in Poisson activity. Here we show that, using certain STDP parameters, the resulting pattern detector is optimal. These mechanisms may explain how humans learn repeating sensory sequences. Long sequences could be recognized thanks to coincidence detectors working at a much shorter timescale. This is consistent with the fact that recognition is still possible if a sound sequence is compressed, played backward, or scrambled using 10-ms bins. Coincidence detection is a simple yet powerful mechanism, which could be the main function of neurons in the brain.
重复的时空尖峰模式存在并携带信息。下游神经元如何提取这些信息尚不清楚。在这里,我们从理论上研究了单个细胞在多大程度上能够检测到给定的尖峰模式,以及实现这一目标的最佳参数是什么,特别是膜时间常数 τ。我们使用具有均匀泊松输入的漏电积分和放电(LIF)神经元,对此进行了分析计算。我们发现, τ (最多几十毫秒)通常较小是最佳的,即使模式长得多。这有点违反直觉,因为由于其快速的记忆衰减,结果检测器忽略了模式的大部分内容。接下来,我们想知道尖峰时间依赖性可塑性(STDP)是否可以使神经元达到理论最优。我们模拟了一个配备了附加 STDP 的 LIF,并反复将其暴露于给定的输入尖峰模式。与以前的研究一样,LIF 逐渐对没有监督的重复模式变得具有选择性,即使模式嵌入在泊松活动中也是如此。在这里,我们表明,使用某些 STDP 参数,所得的模式检测器是最优的。这些机制可能解释了人类如何学习重复的感觉序列。由于在短得多的时间尺度上工作的巧合检测器,长序列可以被识别。这与以下事实是一致的:如果声音序列被压缩、倒放或使用 10 毫秒的 bin 进行打乱,那么仍然可以识别。巧合检测是一种简单而强大的机制,它可能是大脑中神经元的主要功能。