Burroni Javier, Taylor P, Corey Cassian, Vachnadze Tengiz, Siegelmann Hava T
Biologically Inspired Neural and Dynamical Systems Laboratory, College of Information and Computer Sciences, University of Massachusetts Amherst, MA, USA.
Biologically Inspired Neural and Dynamical Systems Laboratory, College of Information and Computer Sciences, University of MassachusettsAmherst, MA, USA; Neuroscience and Behavior Program, University of MassachusettsAmherst, MA, USA.
Front Neurosci. 2017 Feb 27;11:80. doi: 10.3389/fnins.2017.00080. eCollection 2017.
We model energy constraints in a network of spiking neurons, while exploring general questions of resource limitation on network function abstractly. Metabolic states like dietary ketosis or hypoglycemia have a large impact on brain function and disease outcomes. Glia provide metabolic support for neurons, among other functions. Yet, in computational models of glia-neuron cooperation, there have been no previous attempts to explore the effects of direct realistic energy costs on network activity in spiking neurons. Currently, biologically realistic spiking neural networks assume that membrane potential is the main driving factor for neural spiking, and do not take into consideration energetic costs. We define local energy pools to constrain a neuron model, termed Spiking Neuron Energy Pool (SNEP), which explicitly incorporates energy limitations. Each neuron requires energy to spike, and resources in the pool regenerate over time. Our simulation displays an easy-to-use GUI, which can be run locally in a web browser, and is freely available. Energy dependence drastically changes behavior of these neural networks, causing emergent oscillations similar to those in networks of biological neurons. We analyze the system via Lotka-Volterra equations, producing several observations: (1) energy can drive self-sustained oscillations, (2) the energetic cost of spiking modulates the degree and type of oscillations, (3) harmonics emerge with frequencies determined by energy parameters, and (4) varying energetic costs have non-linear effects on energy consumption and firing rates. Models of neuron function which attempt biological realism may benefit from including energy constraints. Further, we assert that observed oscillatory effects of energy limitations exist in networks of many kinds, and that these findings generalize to abstract graphs and technological applications.
我们在脉冲神经元网络中对能量限制进行建模,同时抽象地探索网络功能资源限制的一般问题。饮食性酮症或低血糖等代谢状态对脑功能和疾病结果有很大影响。神经胶质细胞除了其他功能外,还为神经元提供代谢支持。然而,在神经胶质细胞 - 神经元合作的计算模型中,以前没有尝试探索直接现实的能量成本对脉冲神经元网络活动的影响。目前,具有生物学现实性的脉冲神经网络假设膜电位是神经脉冲发放的主要驱动因素,并且没有考虑能量成本。我们定义局部能量池来约束一个神经元模型,称为脉冲神经元能量池(SNEP),它明确纳入了能量限制。每个神经元发放脉冲都需要能量,并且能量池中的资源会随时间再生。我们的模拟展示了一个易于使用的图形用户界面(GUI),它可以在网络浏览器中本地运行,并且是免费可用的。能量依赖性极大地改变了这些神经网络的行为,导致出现类似于生物神经元网络中的振荡。我们通过洛特卡 - 沃尔泰拉方程分析该系统,得出了几个观察结果:(1)能量可以驱动自持振荡;(2)脉冲发放的能量成本调节振荡的程度和类型;(3)谐波以由能量参数确定的频率出现;(4)变化的能量成本对能量消耗和发放率有非线性影响。尝试具有生物学现实性的神经元功能模型可能会受益于纳入能量限制。此外,我们断言能量限制的观察到的振荡效应存在于多种网络中,并且这些发现可以推广到抽象图和技术应用中。