Suppr超能文献

叶片生物钟基因表达的自发时空波。

Spontaneous spatiotemporal waves of gene expression from biological clocks in the leaf.

机构信息

School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6757-62. doi: 10.1073/pnas.1118814109. Epub 2012 Apr 10.

Abstract

The circadian clocks that drive daily rhythms in animals are tightly coupled among the cells of some tissues. The coupling profoundly affects cellular rhythmicity and is central to contemporary understanding of circadian physiology and behavior. In contrast, studies of the clock in plant cells have largely ignored intercellular coupling, which is reported to be very weak or absent. We used luciferase reporter gene imaging to monitor circadian rhythms in leaves of Arabidopsis thaliana plants, achieving resolution close to the cellular level. Leaves grown without environmental cycles for up to 3 wk reproducibly showed spatiotemporal waves of gene expression consistent with intercellular coupling, using several reporter genes. Within individual leaves, different regions differed in phase by up to 17 h. A broad range of patterns was observed among leaves, rather than a common spatial distribution of circadian properties. Leaves exposed to light-dark cycles always had fully synchronized rhythms, which could desynchronize rapidly. After 4 d in constant light, some leaves were as desynchronized as leaves grown without any rhythmic input. Applying light-dark cycles to such a leaf resulted in full synchronization within 2-4 d. Thus, the rhythms of all cells were coupled to external light-dark cycles far more strongly than the cellular clocks were coupled to each other. Spontaneous desynchronization under constant conditions was limited, consistent with weak intercellular coupling among heterogeneous clocks. Both the weakness of coupling and the heterogeneity among cells are relevant to interpret molecular studies and to understand the physiological functions of the plant circadian clock.

摘要

驱动动物日常节律的生物钟在某些组织的细胞之间紧密耦合。这种耦合深刻地影响了细胞的节律性,是当代对生物钟生理学和行为理解的核心。相比之下,对植物细胞生物钟的研究在很大程度上忽略了细胞间的耦合,据报道,这种耦合非常弱或不存在。我们使用荧光素酶报告基因成像来监测拟南芥叶片中的生物钟节律,实现了接近细胞水平的分辨率。在没有环境周期的情况下生长长达 3 周的叶片,使用几种报告基因,反复显示出与细胞间耦合一致的时空基因表达波。在单个叶片内,不同区域的相位差异最大可达 17 小时。在叶片之间观察到广泛的模式,而不是生物钟特性的共同空间分布。暴露在光-暗循环中的叶片总是具有完全同步的节律,这种节律可以迅速去同步。在连续光照下 4 天后,一些叶片的去同步程度与没有任何节律输入的叶片一样。将光-暗循环应用于这样的叶片,在 2-4 天内即可实现完全同步。因此,所有细胞的节律都与外部的光-暗循环紧密耦合,远远超过细胞时钟之间的耦合。在恒定条件下自发去同步是有限的,这与异质时钟之间的细胞间耦合较弱是一致的。耦合的弱性和细胞间的异质性都与解释分子研究以及理解植物生物钟的生理功能有关。

相似文献

1
Spontaneous spatiotemporal waves of gene expression from biological clocks in the leaf.叶片生物钟基因表达的自发时空波。
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6757-62. doi: 10.1073/pnas.1118814109. Epub 2012 Apr 10.
3

引用本文的文献

本文引用的文献

3
Stochastic properties of the plant circadian clock.植物生物钟的随机特性。
J R Soc Interface. 2012 Apr 7;9(69):744-56. doi: 10.1098/rsif.2011.0378. Epub 2011 Aug 31.
5
Timing in plants--a rhythmic arrangement.植物的时间安排——一种有节奏的排列。
FEBS Lett. 2011 May 20;585(10):1474-84. doi: 10.1016/j.febslet.2011.03.051. Epub 2011 Mar 29.
8
Suprachiasmatic nucleus: cell autonomy and network properties.视交叉上核:细胞自主性和网络特性。
Annu Rev Physiol. 2010;72:551-77. doi: 10.1146/annurev-physiol-021909-135919.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验