Suppr超能文献

植物病原菌胶孢炭疽菌通过附着胞和细胞内菌丝顺序传递宿主诱导的毒性效应子。

Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum.

机构信息

Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany.

出版信息

PLoS Pathog. 2012;8(4):e1002643. doi: 10.1371/journal.ppat.1002643. Epub 2012 Apr 5.

Abstract

Phytopathogens secrete effector proteins to manipulate their hosts for effective colonization. Hemibiotrophic fungi must maintain host viability during initial biotrophic growth and elicit host death for subsequent necrotrophic growth. To identify effectors mediating these opposing processes, we deeply sequenced the transcriptome of Colletotrichum higginsianum infecting Arabidopsis. Most effector genes are host-induced and expressed in consecutive waves associated with pathogenic transitions, indicating distinct effector suites are deployed at each stage. Using fluorescent protein tagging and transmission electron microscopy-immunogold labelling, we found effectors localised to stage-specific compartments at the host-pathogen interface. In particular, we show effectors are focally secreted from appressorial penetration pores before host invasion, revealing new levels of functional complexity for this fungal organ. Furthermore, we demonstrate that antagonistic effectors either induce or suppress plant cell death. Based on these results we conclude that hemibiotrophy in Colletotrichum is orchestrated through the coordinated expression of antagonistic effectors supporting either cell viability or cell death.

摘要

植物病原体分泌效应蛋白来操纵宿主,以实现有效的定植。半活体真菌在最初的活体生长阶段必须维持宿主的活力,并引发宿主死亡,以进行后续的坏死生长。为了鉴定介导这些相反过程的效应蛋白,我们对侵染拟南芥的炭疽菌进行了深度转录组测序。大多数效应基因是由宿主诱导的,并在与致病性转变相关的连续波中表达,表明在每个阶段都部署了不同的效应蛋白套件。通过荧光蛋白标记和透射电子显微镜-免疫金标记,我们发现效应蛋白定位于宿主-病原体界面的特定阶段的隔室中。特别是,我们发现效应蛋白从前驱体渗透孔中定点分泌,在宿主入侵之前,揭示了这个真菌器官新的功能复杂性。此外,我们还证明了拮抗效应蛋白可以诱导或抑制植物细胞死亡。基于这些结果,我们得出结论,炭疽菌的半活体特性是通过拮抗效应蛋白的协调表达来调控的,这些效应蛋白支持细胞活力或细胞死亡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28de/3320591/6ece65225553/ppat.1002643.g001.jpg

相似文献

3
Three-Dimensional Ultrastructure of Cotyledons Infected with .
Mol Plant Microbe Interact. 2024 Apr;37(4):396-406. doi: 10.1094/MPMI-05-23-0068-R. Epub 2024 Apr 27.
6
A Novel Hexose Transporter ChHxt6 Is Required for Hexose Uptake and Virulence in .
Int J Mol Sci. 2021 May 31;22(11):5963. doi: 10.3390/ijms22115963.
7
Identification of virulence genes in the crucifer anthracnose fungus Colletotrichum higginsianum by insertional mutagenesis.
Microb Pathog. 2013 Nov;64:6-17. doi: 10.1016/j.micpath.2013.06.001. Epub 2013 Jun 24.
8
10
Multiple species commonly exhibit focal effector accumulation in a biotrophic interface at the primary invasion sites in their host plants.
Plant Signal Behav. 2021 Oct 3;16(10):1935604. doi: 10.1080/15592324.2021.1935604. Epub 2021 Jun 12.

引用本文的文献

1
Decoding sugarcane smut: the role of effector SsEF83 in fungal virulence and plant interaction.
Front Microbiol. 2025 Aug 18;16:1586720. doi: 10.3389/fmicb.2025.1586720. eCollection 2025.
2
Early detection of fungal infection of Arabidopsis and brassica by Raman spectroscopy.
Front Plant Sci. 2025 Aug 15;16:1649206. doi: 10.3389/fpls.2025.1649206. eCollection 2025.
4
6
Transcriptome analysis of -Strawberry interaction reveals expressed genes associated with virulence.
Front Plant Sci. 2025 Jan 20;15:1390926. doi: 10.3389/fpls.2024.1390926. eCollection 2024.
8
What lies behind the large genome of .
Front Fungal Biol. 2024 Oct 15;5:1459229. doi: 10.3389/ffunb.2024.1459229. eCollection 2024.
9
What are the 100 most cited fungal genera?
Stud Mycol. 2024 Jul;108:1-411. doi: 10.3114/sim.2024.108.01. Epub 2024 Jul 15.

本文引用的文献

2
Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire.
Plant Cell. 2011 Jun;23(6):2064-86. doi: 10.1105/tpc.111.086082. Epub 2011 Jun 7.
3
Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome.
Science. 2010 Dec 10;330(6010):1549-1551. doi: 10.1126/science.1195203.
4
Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria.
Cell Microbiol. 2011 Feb;13(2):210-26. doi: 10.1111/j.1462-5822.2010.01530.x. Epub 2010 Oct 28.
5
Host and nonhost resistance in Medicago-Colletotrichum interactions.
Mol Plant Microbe Interact. 2010 Sep;23(9):1107-17. doi: 10.1094/MPMI-23-9-1107.
6
Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis-wheat interaction.
New Phytol. 2010 Sep;187(4):911-9. doi: 10.1111/j.1469-8137.2010.03362.x. Epub 2010 Jul 14.
8
Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement.
Plant Cell. 2010 Apr;22(4):1388-403. doi: 10.1105/tpc.109.069666. Epub 2010 Apr 30.
9
A secreted effector protein (SNE1) from Phytophthora infestans is a broadly acting suppressor of programmed cell death.
Plant J. 2010 May;62(3):357-66. doi: 10.1111/j.1365-313X.2010.04160.x. Epub 2010 Feb 1.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验