Hannig E M, Williams N P, Wek R C, Hinnebusch A G
Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892.
Genetics. 1990 Nov;126(3):549-62. doi: 10.1093/genetics/126.3.549.
The GCN4 protein of S. cerevisiae is a transcriptional activator of amino acid biosynthetic genes which are subject to general amino acid control. GCN3, a positive regulator required for increased GCN4 expression in amino acid-starved cells, is thought to function by antagonism of one or more negative regulators encoded by GCD genes. We isolated gcn3c alleles that lead to constitutively derepressed expression of GCN4 and amino acid biosynthetic genes under its control. These mutations map in the protein-coding sequences and, with only one exception, do not increase the steady-state level of GCN3 protein. All of the gcn3c alleles lead to derepression of genes under the general control in the absence of GCN1 and GCN2, two other positive regulators of GCN4 expression. This finding suggests that GCN3 functions downstream from GCN1 and GCN2 in the general control pathway. In accord with this idea, constitutively derepressing alleles of GCN2 are greatly dependent on GCN3 for their derepressed phenotype. The gcn3c alleles that are least dependent on GCN1 and GCN2 for derepression cause slow-growth under nonstarvation conditions. In addition, all of the gcn3c alleles are less effective than wild-type GCN3 in overcoming the temperature-sensitive lethality associated with certain mutations in the negative regulator GCD2. These results suggest that activation of GCN3 positive regulatory function by the gcn3c mutations involves constitutive antagonism of GCD2 function, leading to reduced growth rates and derepression of GCN4 expression in the absence of amino acid starvation.
酿酒酵母的GCN4蛋白是受一般氨基酸调控的氨基酸生物合成基因的转录激活因子。GCN3是在氨基酸饥饿细胞中增加GCN4表达所需的正向调节因子,被认为通过拮抗由GCD基因编码的一种或多种负向调节因子发挥作用。我们分离出了gcn3c等位基因,这些等位基因导致在其控制下GCN4和氨基酸生物合成基因的组成型去阻遏表达。这些突变位于蛋白质编码序列中,除了一个例外,不会增加GCN3蛋白的稳态水平。所有gcn3c等位基因在没有GCN1和GCN2(GCN4表达的另外两个正向调节因子)的情况下都会导致一般调控下的基因去阻遏。这一发现表明GCN3在一般调控途径中位于GCN1和GCN2的下游发挥作用。与此观点一致的是,GCN2的组成型去阻遏等位基因的去阻遏表型在很大程度上依赖于GCN3。在去阻遏方面对GCN1和GCN2依赖性最小的gcn3c等位基因在非饥饿条件下导致生长缓慢。此外,所有gcn3c等位基因在克服与负向调节因子GCD2的某些突变相关的温度敏感致死性方面都不如野生型GCN3有效。这些结果表明,gcn3c突变对GCN3正向调节功能的激活涉及对GCD2功能的组成型拮抗,导致在没有氨基酸饥饿的情况下生长速率降低和GCN4表达去阻遏。