Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, China.
J Am Coll Cardiol. 2012 Apr 17;59(16):1477-86. doi: 10.1016/j.jacc.2011.12.034.
The purpose of this study was to examine the cellular and molecular mechanisms underlying alcoholic cardiomyopathy.
The mechanism for alcoholic cardiomyopathy remains largely unknown.
The chronic cardiac effects of alcohol were examined in mice feeding with alcohol or isocaloric control diet for 2 months. Signaling pathways of alcohol-induced cardiac cell death were examined in H9c2 cells.
Compared with controls, hearts from alcohol-fed mice exhibited increased apoptosis, along with significant nitrative damage, demonstrated by 3-nitrotyrosine abundance. Alcohol exposure to H9c2 cells induced apoptosis, accompanied by 3-nitrotyrosine accumulation and nicotinamide adenine dinucleotide phosphate oxidase (NOX) activation. Pre-incubation of H9c2 cells with urate (peroxynitrite scavenger), N(G)-nitro-L-arginine methyl ester (a nitric oxide synthase inhibitor), manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (a superoxide dismutase mimetic), and apocynin (NOX inhibitor) abrogated alcohol-induced apoptosis. Furthermore, alcohol exposure significantly increased the expression of angiotensin II and its type 1 receptor (AT1). A protein kinase C (PKC)-α/β1 inhibitor or PKC-β1 small interfering RNA and an AT1 blocker prevented alcohol-induced activation of NOX, and the AT1 blocker losartan significantly inhibited the expression of PKC-β1, indicating that alcohol-induced activation of NOX is mediated by PKC-β1 via AT1. To define the role of AT1-mediated PKC/NOX-derived superoxide generation in alcohol-induced cardiotoxicity, mice with knockout of the AT1 gene and wild-type mice were simultaneously treated with alcohol for 2 months. The knockout AT1 gene completely prevented cardiac nitrative damage, cell death, remodeling, and dysfunction. More importantly, pharmacological treatment of alcoholic mice with superoxide dismutase mimetic also significantly prevented cardiac nitrative damage, cell death, and remodeling.
Alcohol-induced nitrative stress and apoptosis, which are mediated by angiotensin II interaction with AT1 and subsequent activation of a PKC-β1-dependent NOX pathway, are a causal factor in the development of alcoholic cardiomyopathy.
本研究旨在探讨酒精性心肌病的细胞和分子机制。
酒精性心肌病的发病机制尚不清楚。
用含酒精或等热量对照饮食喂养 2 个月的小鼠,观察酒精对心脏的慢性影响。在 H9c2 细胞中检测酒精诱导的心肌细胞死亡的信号通路。
与对照组相比,酒精喂养的小鼠心脏凋亡增加,同时硝基酪氨酸含量增加,表明存在硝化损伤。酒精暴露于 H9c2 细胞可诱导细胞凋亡,同时伴有硝基酪氨酸积累和烟酰胺腺嘌呤二核苷酸磷酸氧化酶(NOX)激活。H9c2 细胞预先孵育尿酸(过氧亚硝酸盐清除剂)、N(G)-硝基-L-精氨酸甲酯(一氧化氮合酶抑制剂)、锰(III)四(1-甲基-4-吡啶基)卟啉(超氧化物歧化酶模拟物)和 apocynin(NOX 抑制剂)可阻断酒精诱导的细胞凋亡。此外,酒精暴露显著增加了血管紧张素 II 及其 1 型受体(AT1)的表达。蛋白激酶 C(PKC)-α/β1 抑制剂或 PKC-β1 小干扰 RNA 以及 AT1 阻滞剂可阻止酒精诱导的 NOX 激活,AT1 阻滞剂氯沙坦可显著抑制 PKC-β1 的表达,表明酒精诱导的 NOX 激活是通过 AT1 介导的 PKC-β1 实现的。为了确定 AT1 介导的 PKC/NOX 衍生的超氧化物生成在酒精诱导的心脏毒性中的作用,同时用酒精处理敲除 AT1 基因的小鼠和野生型小鼠 2 个月。敲除 AT1 基因可完全防止心脏硝化损伤、细胞死亡、重构和功能障碍。更重要的是,用超氧化物歧化酶模拟物对酒精性小鼠进行药物治疗也可显著防止心脏硝化损伤、细胞死亡和重构。
酒精诱导的硝化应激和凋亡是由血管紧张素 II 与 AT1 相互作用并随后激活 PKC-β1 依赖性 NOX 途径介导的,是酒精性心肌病发生的一个因果因素。