Suppr超能文献

使用具有重叠性的组套索快速鉴定与数量性状相关的生物途径。

Fast identification of biological pathways associated with a quantitative trait using group lasso with overlaps.

作者信息

Silver Matt, Montana Giovanni

机构信息

Imperial College London, UK.

出版信息

Stat Appl Genet Mol Biol. 2012 Jan 6;11(1):Article 7. doi: 10.2202/1544-6115.1755.

Abstract

Where causal SNPs (single nucleotide polymorphisms) tend to accumulate within biological pathways, the incorporation of prior pathways information into a statistical model is expected to increase the power to detect true associations in a genetic association study. Most existing pathways-based methods rely on marginal SNP statistics and do not fully exploit the dependence patterns among SNPs within pathways.We use a sparse regression model, with SNPs grouped into pathways, to identify causal pathways associated with a quantitative trait. Notable features of our "pathways group lasso with adaptive weights" (P-GLAW) algorithm include the incorporation of all pathways in a single regression model, an adaptive pathway weighting procedure that accounts for factors biasing pathway selection, and the use of a bootstrap sampling procedure for the ranking of important pathways. P-GLAW takes account of the presence of overlapping pathways and uses a novel combination of techniques to optimise model estimation, making it fast to run, even on whole genome datasets.In a comparison study with an alternative pathways method based on univariate SNP statistics, our method demonstrates high sensitivity and specificity for the detection of important pathways, showing the greatest relative gains in performance where marginal SNP effect sizes are small.

摘要

当因果单核苷酸多态性(SNPs)倾向于在生物通路中聚集时,将先前的通路信息纳入统计模型有望提高基因关联研究中检测真实关联的能力。大多数现有的基于通路的方法依赖于边际SNP统计,并未充分利用通路内SNP之间的依赖模式。我们使用一种稀疏回归模型,将SNPs按通路分组,以识别与数量性状相关的因果通路。我们的“带自适应权重的通路组套索”(P-GLAW)算法的显著特点包括在单个回归模型中纳入所有通路、一种考虑影响通路选择因素的自适应通路加权程序,以及使用自举抽样程序对重要通路进行排序。P-GLAW考虑了重叠通路的存在,并使用一种新颖的技术组合来优化模型估计,即使在全基因组数据集上运行也很快。在与基于单变量SNP统计的另一种通路方法的比较研究中,我们的方法在检测重要通路上表现出高灵敏度和特异性,在边际SNP效应大小较小时性能提升最为显著。

相似文献

引用本文的文献

9
Brain Imaging Genomics: Integrated Analysis and Machine Learning.脑成像基因组学:综合分析与机器学习
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):125-162. doi: 10.1109/JPROC.2019.2947272. Epub 2019 Oct 29.

本文引用的文献

1
Strong rules for discarding predictors in lasso-type problems.在套索型问题中舍弃预测变量的严格规则。
J R Stat Soc Series B Stat Methodol. 2012 Mar;74(2):245-266. doi: 10.1111/j.1467-9868.2011.01004.x.
4
Biological pathway selection through nonlinear dimension reduction.通过非线性降维选择生物途径。
Biostatistics. 2011 Jul;12(3):429-44. doi: 10.1093/biostatistics/kxq081. Epub 2011 Jan 20.
9
Penalized methods for bi-level variable selection.用于双层变量选择的惩罚方法。
Stat Interface. 2009 Jul 1;2(3):369-380. doi: 10.4310/sii.2009.v2.n3.a10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验