Statistics Section, Department of Mathematics, Imperial College London, UK.
Neuroimage. 2012 Nov 15;63(3):1681-94. doi: 10.1016/j.neuroimage.2012.08.002. Epub 2012 Aug 15.
We present a new method for the detection of gene pathways associated with a multivariate quantitative trait, and use it to identify causal pathways associated with an imaging endophenotype characteristic of longitudinal structural change in the brains of patients with Alzheimer's disease (AD). Our method, known as pathways sparse reduced-rank regression (PsRRR), uses group lasso penalised regression to jointly model the effects of genome-wide single nucleotide polymorphisms (SNPs), grouped into functional pathways using prior knowledge of gene-gene interactions. Pathways are ranked in order of importance using a resampling strategy that exploits finite sample variability. Our application study uses whole genome scans and MR images from 99 probable AD patients and 164 healthy elderly controls in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. 66,182 SNPs are mapped to 185 gene pathways from the KEGG pathway database. Voxel-wise imaging signatures characteristic of AD are obtained by analysing 3D patterns of structural change at 6, 12 and 24 months relative to baseline. High-ranking, AD endophenotype-associated pathways in our study include those describing insulin signalling, vascular smooth muscle contraction and focal adhesion. All of these have been previously implicated in AD biology. In a secondary analysis, we investigate SNPs and genes that may be driving pathway selection. High ranking genes include a number previously linked in gene expression studies to β-amyloid plaque formation in the AD brain (PIK3R3,PIK3CG,PRKCAandPRKCB), and to AD related changes in hippocampal gene expression (ADCY2, ACTN1, ACACA, and GNAI1). Other high ranking previously validated AD endophenotype-related genes include CR1, TOMM40 and APOE.
我们提出了一种新的方法来检测与多变量定量性状相关的基因途径,并将其用于识别与阿尔茨海默病(AD)患者大脑纵向结构变化的影像学内表型特征相关的因果途径。我们的方法称为途径稀疏降秩回归(PsRRR),使用组套索惩罚回归来联合建模全基因组单核苷酸多态性(SNPs)的影响,这些 SNPs 按照基因-基因相互作用的先验知识分组为功能途径。通过利用有限样本变异性的重采样策略对途径进行重要性排序。我们的应用研究使用了阿尔茨海默病神经影像学倡议(ADNI)数据库中 99 名可能的 AD 患者和 164 名健康老年人的全基因组扫描和磁共振成像。将 66182 个 SNPs 映射到 KEGG 途径数据库中的 185 个基因途径。通过分析相对于基线的 6、12 和 24 个月的结构变化的 3D 模式,获得 AD 特征的体素成像特征。在我们的研究中,与 AD 高相关的高排名内表型相关途径包括描述胰岛素信号、血管平滑肌收缩和局灶粘连的途径。所有这些途径以前都与 AD 生物学有关。在二次分析中,我们研究了可能驱动途径选择的 SNPs 和基因。排名较高的基因包括先前在基因表达研究中与 AD 大脑中β-淀粉样斑块形成(PIK3R3、PIK3CG、PRKCA 和 PRKCB)以及 AD 相关的海马基因表达变化(ADCY2、ACTN1、ACACA 和 GNAI1)相关的许多基因。其他排名较高的先前验证的 AD 内表型相关基因包括 CR1、TOMM40 和 APOE。