Xu Liqing, Xiao Yu, Wang Sining, Cui Bo, Wu Di, Ding Xiangdong, Zhao Li-Dong
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049, Xi'an, China.
School of Materials Science and Engineering, Beihang University, 100191, Beiijng, China.
Nat Commun. 2022 Oct 28;13(1):6449. doi: 10.1038/s41467-022-34227-3.
PbSe-based thermoelectric materials exhibit promising ZT values at medium temperature, but its near-room-temperature thermoelectric properties are overlooked, thus restricting its average ZT (ZT) value at low-medium temperatures. Here, a high ZT of 0.90 at low temperature (300-573 K) is reported in n-type PbSe-based thermoelectric material (PbSeTeS-0.3%Cu), resulting in a large ZT of 0.96 at low-medium temperatures (300-773 K). This high thermoelectric performance stems from its ultralow lattice thermal conductivity caused by dense dislocations through heavy Te/S alloying and Cu interstitial doping. The dislocation density evaluated by modified Williamson-Hall method reaches up to 5.4 × 10 m in PbSeTeS-0.3%Cu. Moreover, the microstructure observation further uncloses two kinds of dislocations, namely screw and edge dislocations, with several to hundreds of nanometers scale in length. These dislocations in lattice can strongly intensify phonon scattering to minimize the lattice thermal conductivity and simultaneously maintain high carrier transport. As a result, with the reduced lattice thermal conductivity and optimized power factor in PbSeTeS-0.3%Cu, its near-room-temperature thermoelectric performance is largely enhanced and exceeds previous PbSe-based thermoelectric materials.
基于PbSe的热电材料在中温下展现出有前景的ZT值,但其近室温热电性能被忽视,从而限制了其在低中温下的平均ZT值。在此,报道了一种n型基于PbSe的热电材料(PbSeTeS-0.3%Cu)在低温(300 - 573 K)下具有0.90的高ZT值,在低中温(300 - 773 K)下导致0.96的大ZT值。这种高热电性能源于通过大量Te/S合金化和Cu间隙掺杂产生的致密位错导致的超低晶格热导率。通过改进的威廉姆森 - 霍尔方法评估的PbSeTeS-0.3%Cu中的位错密度高达5.4×10¹⁵ m⁻²。此外,微观结构观察进一步揭示了两种位错,即螺型位错和刃型位错,长度在几纳米到几百纳米尺度。晶格中的这些位错可强烈增强声子散射,以使晶格热导率最小化,同时保持高载流子输运。结果,随着PbSeTeS-0.3%Cu中晶格热导率的降低和功率因子的优化,其近室温热电性能得到大幅增强,超过了先前基于PbSe的热电材料。