CReSS LLC, 1 Seaborn Place, Lexington, Massachusetts 02420, USA.
J Acoust Soc Am. 2012 Apr;131(4):2999-3016. doi: 10.1121/1.3685824.
An equation describing the time-evolution of glottal volume velocity with specified vocal fold motion is derived when the sub- and supra-glottal vocal tracts are present. The derivation of this Fant equation employs a property explicated in Howe and McGowan [(2011) J. Fluid Mech. 672, 428-450] that the Fant equation is the adjoint to the equation characterizing the matching conditions of sub- and supra-glottal Green's functions segments with the glottal segment. The present aeroacoustic development shows that measurable quantities such as input impedances at the glottis, provide the coefficients for the Fant equation when source-tract interaction is included in the development. Explicit expressions for the Green's function are not required. With the poles and zeros of the input impedance functions specified, the Fant equation can be solved. After the general derivation of the Fant equation, the specific cases where plane wave acoustic propagation is described either by a Sturm-Liouville problem or concatenated cylindrical tubes is considered. Simulations show the expected skewing of the glottal volume velocity pulses depending on whether the fundamental frequency is below or above a sub- or supra-glottal formant. More complex glottal wave forms result when both the first supra-glottal fundamental frequencies are high and close to the first sub-glottal formant.
当亚声门和声声门声道存在时,会推导出一个描述声门体积速度随指定声带运动的时间演化的方程。Howe 和 McGowan [(2011) J. Fluid Mech. 672, 428-450] 阐明的一个性质被用来推导出这个 Fant 方程,即 Fant 方程是描述亚声门和声声门格林函数段与声门段匹配条件的方程的伴随方程。目前的空气声学发展表明,当包括声源-声道相互作用时,可测量的量,如声门处的输入阻抗,为 Fant 方程提供了系数。不需要显式的格林函数表达式。指定输入阻抗函数的极点和零点后,可以求解 Fant 方程。 Fant 方程的一般推导之后,考虑了平面波声波传播分别由 Sturm-Liouville 问题或串联圆柱管描述的具体情况。模拟表明,根据基频是低于还是高于亚声门或声声门共振峰,声门体积速度脉冲会出现预期的倾斜。当第一个声声门基频都较高且接近第一个亚声门共振峰时,会产生更复杂的声门波形成。