Suppr超能文献

声道源与预定声带运动的相互作用。

Source-tract interaction with prescribed vocal fold motion.

机构信息

CReSS LLC, 1 Seaborn Place, Lexington, Massachusetts 02420, USA.

出版信息

J Acoust Soc Am. 2012 Apr;131(4):2999-3016. doi: 10.1121/1.3685824.

Abstract

An equation describing the time-evolution of glottal volume velocity with specified vocal fold motion is derived when the sub- and supra-glottal vocal tracts are present. The derivation of this Fant equation employs a property explicated in Howe and McGowan [(2011) J. Fluid Mech. 672, 428-450] that the Fant equation is the adjoint to the equation characterizing the matching conditions of sub- and supra-glottal Green's functions segments with the glottal segment. The present aeroacoustic development shows that measurable quantities such as input impedances at the glottis, provide the coefficients for the Fant equation when source-tract interaction is included in the development. Explicit expressions for the Green's function are not required. With the poles and zeros of the input impedance functions specified, the Fant equation can be solved. After the general derivation of the Fant equation, the specific cases where plane wave acoustic propagation is described either by a Sturm-Liouville problem or concatenated cylindrical tubes is considered. Simulations show the expected skewing of the glottal volume velocity pulses depending on whether the fundamental frequency is below or above a sub- or supra-glottal formant. More complex glottal wave forms result when both the first supra-glottal fundamental frequencies are high and close to the first sub-glottal formant.

摘要

当亚声门和声声门声道存在时,会推导出一个描述声门体积速度随指定声带运动的时间演化的方程。Howe 和 McGowan [(2011) J. Fluid Mech. 672, 428-450] 阐明的一个性质被用来推导出这个 Fant 方程,即 Fant 方程是描述亚声门和声声门格林函数段与声门段匹配条件的方程的伴随方程。目前的空气声学发展表明,当包括声源-声道相互作用时,可测量的量,如声门处的输入阻抗,为 Fant 方程提供了系数。不需要显式的格林函数表达式。指定输入阻抗函数的极点和零点后,可以求解 Fant 方程。 Fant 方程的一般推导之后,考虑了平面波声波传播分别由 Sturm-Liouville 问题或串联圆柱管描述的具体情况。模拟表明,根据基频是低于还是高于亚声门或声声门共振峰,声门体积速度脉冲会出现预期的倾斜。当第一个声声门基频都较高且接近第一个亚声门共振峰时,会产生更复杂的声门波形成。

相似文献

1
Source-tract interaction with prescribed vocal fold motion.
J Acoust Soc Am. 2012 Apr;131(4):2999-3016. doi: 10.1121/1.3685824.
2
Optimized transformation of the glottal motion into a mechanical model.
Med Eng Phys. 2011 Mar;33(2):210-7. doi: 10.1016/j.medengphy.2010.09.019. Epub 2010 Nov 5.
3
A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
Ann Biomed Eng. 2009 Mar;37(3):625-42. doi: 10.1007/s10439-008-9630-9. Epub 2009 Jan 14.
4
An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
J Acoust Soc Am. 2006 May;119(5 Pt 1):3011-21. doi: 10.1121/1.2186429.
6
Classification of vocal aging using parameters extracted from the glottal signal.
J Voice. 2014 Sep;28(5):532-7. doi: 10.1016/j.jvoice.2014.02.001. Epub 2014 May 28.
8
Glottal source-vocal tract interaction.
J Acoust Soc Am. 1985 Nov;78(5):1541-7. doi: 10.1121/1.392789.
9
Effects of a semioccluded vocal tract on laryngeal muscle activity and glottal adduction in a single female subject.
Folia Phoniatr Logop. 2008;60(6):298-311. doi: 10.1159/000170080. Epub 2008 Nov 14.

引用本文的文献

1
An Investigation of Acoustic Back-Coupling in Human Phonation on a Synthetic Larynx Model.
Bioengineering (Basel). 2023 Nov 22;10(12):1343. doi: 10.3390/bioengineering10121343.
2
Computer-Implemented Articulatory Models for Speech Production: A Review.
Front Robot AI. 2022 Mar 8;9:796739. doi: 10.3389/frobt.2022.796739. eCollection 2022.
3
Aeroacoustic source characterization in a physical model of phonation.
J Acoust Soc Am. 2019 Aug;146(2):1230. doi: 10.1121/1.5122787.
4
Characteristics of the pulsating jet flow through a dynamic glottal model with a lens-like constriction.
Biomed Eng Lett. 2018 Jun 8;8(3):309-320. doi: 10.1007/s13534-018-0075-2. eCollection 2018 Aug.
5
AERODYNAMIC SOUND OF A BODY IN ARBITRARY, DEFORMABLE MOTION, WITH APPLICATION TO PHONATION.
J Sound Vib. 2013 Aug 19;332(17):3909-3923. doi: 10.1016/j.jsv.2012.11.009.
6
Voicing produced by a constant velocity lung source.
J Acoust Soc Am. 2013 Apr;133(4):2340-9. doi: 10.1121/1.4794385.

本文引用的文献

3
ON THE GENERALISED FANT EQUATION.
J Sound Vib. 2011 Jun 20;330(13):3123-3140. doi: 10.1016/j.jsv.2011.01.017.
5
Comments on single-mass models of vocal fold vibration.
J Acoust Soc Am. 2010 May;127(5):EL215-21. doi: 10.1121/1.3397283.
6
Biomechanical modeling of register transitions and the role of vocal tract resonators.
J Acoust Soc Am. 2010 Mar;127(3):1528-36. doi: 10.1121/1.3299201.
7
ANALYSIS OF FLOW-STRUCTURE COUPLING IN A MECHANICAL MODEL OF THE VOCAL FOLDS AND THE SUBGLOTTAL SYSTEM.
J Fluids Struct. 2009 Nov 1;25(8):1299-1317. doi: 10.1016/j.jfluidstructs.2009.08.002.
8
Modeling source-filter interaction in belting and high-pitched operatic male singing.
J Acoust Soc Am. 2009 Sep;126(3):1530. doi: 10.1121/1.3160296.
9
Nonlinear source-filter coupling in phonation: theory.
J Acoust Soc Am. 2008 May;123(5):2733-49. doi: 10.1121/1.2832337.
10
Nonlinear source-filter coupling in phonation: vocal exercises.
J Acoust Soc Am. 2008 Apr;123(4):1902-15. doi: 10.1121/1.2832339.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验