Suppr超能文献

细菌细胞壁二磷脂寡糖片段的模块化合成及其用于研究默诺霉素和其他抗生素作用机制的应用

Modular synthesis of diphospholipid oligosaccharide fragments of the bacterial cell wall and their use to study the mechanism of moenomycin and other antibiotics.

作者信息

Gampe Christian M, Tsukamoto Hirokazu, Wang Tsung-Shing Andrew, Walker Suzanne, Kahne Daniel

机构信息

Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.

出版信息

Tetrahedron. 2011 Dec 23;67(51):9771-9778. doi: 10.1016/j.tet.2011.09.114.

Abstract

We present a flexible, modular route to GlcNAc-MurNAc-oligosaccharides that can be readily converted into peptidoglycan (PG) fragments to serve as reagents for the study of bacterial enzymes that are targets for antibiotics. Demonstrating the utility of these synthetic PG substrates, we show that the tetrasaccharide substrate lipid IV (3), but not the disaccharide substrate lipid II (2), significantly increases the concentration of moenomycin A required to inhibit a prototypical PG-glycosyltransferase (PGT). These results imply that lipid IV and moenomycin A bind to the same site on the enzyme. We also show the moenomycin A inhibits the formation of elongated polysaccharide product but does not affect length distribution. We conclude that moenomycin A blocks PG-strand initiation rather than elongation or chain termination. Synthetic access to diphospholipid oligosaccharides will enable further studies of bacterial cell wall synthesis with the long-term goal of identifying novel antibiotics.

摘要

我们提出了一种灵活、模块化的合成GlcNAc-MurNAc-寡糖的方法,该寡糖可轻松转化为肽聚糖(PG)片段,用作研究作为抗生素靶点的细菌酶的试剂。通过展示这些合成PG底物的实用性,我们发现四糖底物脂质IV(3)而非二糖底物脂质II(2)会显著提高抑制典型PG-糖基转移酶(PGT)所需的莫能菌素A的浓度。这些结果表明脂质IV和莫能菌素A结合在酶的同一位点上。我们还表明莫能菌素A抑制延长的多糖产物的形成,但不影响长度分布。我们得出结论,莫能菌素A阻断PG链的起始,而非延伸或链终止。二磷脂寡糖的合成途径将有助于进一步研究细菌细胞壁合成,长期目标是鉴定新型抗生素。

相似文献

5
Targeting Bacterial Cell Wall Peptidoglycan Synthesis by Inhibition of Glycosyltransferase Activity.
Chem Biol Drug Des. 2016 Feb;87(2):190-9. doi: 10.1111/cbdd.12662. Epub 2015 Oct 9.
6
Tuning the moenomycin pharmacophore to enable discovery of bacterial cell wall synthesis inhibitors.
J Am Chem Soc. 2013 Mar 13;135(10):3776-9. doi: 10.1021/ja4000933. Epub 2013 Mar 4.
8
Synthesis of modified peptidoglycan precursor analogues for the inhibition of glycosyltransferase.
J Am Chem Soc. 2012 Jun 6;134(22):9343-51. doi: 10.1021/ja302099u. Epub 2012 May 25.
9
Positive cooperativity between acceptor and donor sites of the peptidoglycan glycosyltransferase.
Biochem Pharmacol. 2015 Jan 15;93(2):141-50. doi: 10.1016/j.bcp.2014.11.003. Epub 2014 Nov 14.
10
GlcNAc-1,6-anhydro-MurNAc Moiety Affords Unusual Glycosyl Acceptor that Terminates Peptidoglycan Elongation.
J Am Chem Soc. 2024 Mar 20;146(11):7400-7407. doi: 10.1021/jacs.3c12526. Epub 2024 Mar 8.

引用本文的文献

1
Structural diversity, bioactivity, and biosynthesis of phosphoglycolipid family antibiotics: Recent advances.
BBA Adv. 2022 Nov 17;2:100065. doi: 10.1016/j.bbadva.2022.100065. eCollection 2022.
3
Unipolar Peptidoglycan Synthesis in the Requires an Essential Class A Penicillin-Binding Protein.
mBio. 2021 Oct 26;12(5):e0234621. doi: 10.1128/mBio.02346-21. Epub 2021 Sep 21.
4
Facile Synthesis of Sugar Lactols via Bromine-Mediated Oxidation of Thioglycosides.
J Carbohydr Chem. 2019;38(2):109-126. doi: 10.1080/07328303.2019.1581889. Epub 2019 Mar 20.
5
SEDS proteins are a widespread family of bacterial cell wall polymerases.
Nature. 2016 Sep 29;537(7622):634-638. doi: 10.1038/nature19331. Epub 2016 Aug 15.
6
Glycosyltransferases and Transpeptidases/Penicillin-Binding Proteins: Valuable Targets for New Antibacterials.
Antibiotics (Basel). 2016 Feb 17;5(1):12. doi: 10.3390/antibiotics5010012.
8
Prospects for novel inhibitors of peptidoglycan transglycosylases.
Bioorg Chem. 2014 Aug;55(100):16-26. doi: 10.1016/j.bioorg.2014.05.007. Epub 2014 May 21.
9
Bioactive oligosaccharide natural products.
Nat Prod Rep. 2014 Aug;31(8):1026-42. doi: 10.1039/c3np70128j.
10
MoeH5: a natural glycorandomizer from the moenomycin biosynthetic pathway.
Mol Microbiol. 2013 Dec;90(6):1324-38. doi: 10.1111/mmi.12437. Epub 2013 Nov 21.

本文引用的文献

1
A new synthetic approach toward bacterial transglycosylase substrates, Lipid II and Lipid IV.
Org Lett. 2011 Sep 2;13(17):4600-3. doi: 10.1021/ol201806d. Epub 2011 Jul 28.
2
Transpeptidase-mediated incorporation of D-amino acids into bacterial peptidoglycan.
J Am Chem Soc. 2011 Jul 20;133(28):10748-51. doi: 10.1021/ja2040656. Epub 2011 Jun 27.
3
N-methylimidazolium chloride-catalyzed pyrophosphate formation: application to the synthesis of Lipid I and NDP-sugar donors.
Bioorg Med Chem Lett. 2011 Sep 1;21(17):5050-3. doi: 10.1016/j.bmcl.2011.04.061. Epub 2011 Apr 22.
4
Primer preactivation of peptidoglycan polymerases.
J Am Chem Soc. 2011 Jun 8;133(22):8528-30. doi: 10.1021/ja2028712. Epub 2011 May 17.
5
Regioselective reductive openings of 4,6-benzylidene acetals: synthetic and mechanistic aspects.
Carbohydr Res. 2011 Sep 6;346(12):1358-70. doi: 10.1016/j.carres.2011.03.032. Epub 2011 Apr 1.
7
Studying a cell division amidase using defined peptidoglycan substrates.
J Am Chem Soc. 2009 Dec 30;131(51):18230-1. doi: 10.1021/ja908916z.
8
Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli.
Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8824-9. doi: 10.1073/pnas.0904030106. Epub 2009 May 19.
10
Antibiotic-resistant bugs in the 21st century--a clinical super-challenge.
N Engl J Med. 2009 Jan 29;360(5):439-43. doi: 10.1056/NEJMp0804651.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验