Gampe Christian M, Tsukamoto Hirokazu, Wang Tsung-Shing Andrew, Walker Suzanne, Kahne Daniel
Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.
Tetrahedron. 2011 Dec 23;67(51):9771-9778. doi: 10.1016/j.tet.2011.09.114.
We present a flexible, modular route to GlcNAc-MurNAc-oligosaccharides that can be readily converted into peptidoglycan (PG) fragments to serve as reagents for the study of bacterial enzymes that are targets for antibiotics. Demonstrating the utility of these synthetic PG substrates, we show that the tetrasaccharide substrate lipid IV (3), but not the disaccharide substrate lipid II (2), significantly increases the concentration of moenomycin A required to inhibit a prototypical PG-glycosyltransferase (PGT). These results imply that lipid IV and moenomycin A bind to the same site on the enzyme. We also show the moenomycin A inhibits the formation of elongated polysaccharide product but does not affect length distribution. We conclude that moenomycin A blocks PG-strand initiation rather than elongation or chain termination. Synthetic access to diphospholipid oligosaccharides will enable further studies of bacterial cell wall synthesis with the long-term goal of identifying novel antibiotics.
我们提出了一种灵活、模块化的合成GlcNAc-MurNAc-寡糖的方法,该寡糖可轻松转化为肽聚糖(PG)片段,用作研究作为抗生素靶点的细菌酶的试剂。通过展示这些合成PG底物的实用性,我们发现四糖底物脂质IV(3)而非二糖底物脂质II(2)会显著提高抑制典型PG-糖基转移酶(PGT)所需的莫能菌素A的浓度。这些结果表明脂质IV和莫能菌素A结合在酶的同一位点上。我们还表明莫能菌素A抑制延长的多糖产物的形成,但不影响长度分布。我们得出结论,莫能菌素A阻断PG链的起始,而非延伸或链终止。二磷脂寡糖的合成途径将有助于进一步研究细菌细胞壁合成,长期目标是鉴定新型抗生素。